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Abstract

Human health is largely influenced by genetic architecture and living environments. Evolutionary

processes, especially past adaptation to changing environments, shaped the genetic architecture and might

deeply influence current disease risks. Advances in genomic sequencing dramatically improved our

understanding of the genetic basis of diseases in the past ten years. Thousands of genes have been found

to be associated with non-infectious and infectious diseases. However, the adaptation experienced by

disease-associated genes is not well characterized, let alone the potential causal relationships between

disease and genomic adaptation. Here, we use human genomic data to characterize the interplay between

adaptation and human non-infectious diseases: what disease gene attributes may influence adaptation, and

conversely how past adaptation may have shaped the landscape of disease variants.

In the first chapter, I study an important prerequisite: accounting for confounders when studying

adaptation in groups of genes, for example, disease genes, relative to the rest of the genome. I show how

the lack of accounting for confounding factors other than the biological categories of interest can cause

spurious results in the framework of Gene Set Enrichment Analysis (GSEA) of past adaptation. I propose

a pipeline that specifically addresses the methodological problems of GSEA applied to recent adaptation

in the form of selective sweeps.

In the second chapter, I use the GSEA approach established in the first chapter to study the relationship

between human non-infectious disease and recent adaptation. I specifically try to clarify the dominant

causal direction of this relationship. Adaptation might increase the risk of diseases. For example,

deleterious mutations may increase in frequency by hitchhiking with advantageous mutations and thus

genes carrying deleterious variants may experience more recent adaptation compared to non-disease

genes. Alternatively, pre-existing disease status associated with disease genes might affect the occurrence

of selective sweeps at disease genes through the specific attributes that differentiate disease genes from

non-disease genes. We find a deficit of selective sweeps in Mendelian non-infectious disease genes

compared to non-disease genes in the human genome. This deficit is due to linked disease variants

substantially slowing down adaptation at disease gene loci. This highlights a dominant causal relationship

direction, without however excluding the possibility that selective sweeps have also increased the

frequency of linked disease variants, albeit not at a sufficiently large number of genes to create a visible

selective sweep enrichment to counteract the observed deficit, caused by the more predominant opposite

action of disease variants slowing down linked adaptive variants. Thus, the picture that emerges from
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these results is that predominantly, some pre-existing specific attributes of disease genes have limited

recent adaptation at their corresponding loci.

Taking a step back to the definition of disease, disease is a phenotype that largely deviated from the

optimum. What processes might increase the risk of having a largely deviated phenotype? Past strong

adaptations, including those that took place a long evolutionary time ago, may have taken the associated

phenotypes further from the current optimum compared to the hypothetical situation where these

adaptations had not occurred. For example, for a protein whose optimal abundance is high in the current

and most historical environments, past adaptation to one particular environment that lowers the

abundance to the edge of the disease-causing value may increase the risk of association with diseases.

Any mutation that slightly further decreases the abundance may push the abundance of the protein below

the critical disease level. In this respect, past strong and rapid adaptation, as opposed to weak and slow

adaptation, should have been particularly prone to cause pronounced shifts away from phenotypic optima.

An important difficulty then is to first identify past strong adaptations in the human genome. This

challenge presented an opportunity for me to connect my work on non-infectious diseases and adaptation

to the work done by the rest of the lab on virus-driven adaptation. As mentioned, past strong adaptation

should have been more prone to distance phenotypes away from the current optima. We happen to know

that viruses drove strong adaptation in human host genomes during ancient viral epidemics, in genes that

interact physically with viruses (VIPs for Virus-Interacting Proteins). This strong adaptation notably

likely involved adaptive changes in gene expression and abundance, a phenotype that has been shown

many times to be connected to genetic diseases. Although we do not have access to past changes in

protein abundance directly, we can infer past changes in protein stability, the protein property that affects

abundance of folded, functional proteins.

In the third chapter, I therefore study host protein adaptations in response to viruses that were driven by

changes in protein stability of VIPs. We find that past strong adaptation in VIPs mostly involved large

stability changes. This result indicates that host VIP protein stability and thus protein abundance is a

phenotype that was strongly selected during ancient viral epidemics. However, the optimal protein

stability during past epidemics may be deviated from the current optimum after the selective pressure is

weak or gone. In fact, we find compensatory evolution that keeps protein stability stable following viral

epidemics in proviral VIPs which have broadly conserved non-immune host native functions.
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At the same time, specifically, many genetic diseases are known to carry disease variants that decrease

thermodynamic stabilities. It is possible that strong past adaptation to viral infections that largely changed

protein stability in VIPs increases the risk for following mutations to be deleterious. However, further

research is needed to connect these virus-driven adaptive changes in VIP stability to the present

occurrence of non-infectious disease variants at VIPs. This connection represents a logical further avenue

of research to continue to characterize the relationship between non-infectious disease genes and

adaptation.
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Chapter 1: Introduction

1.1 Why study the interplay between genetic diseases and adaptive evolution?

1.1.1 Genetic basis of diseases

The classification of diseases is a complicated biological and ethical problem. Whether a phenotype is

considered as a disease varies in different cultural contexts and at different historical times. For example,

homosexuality was viewed as a mental disease during the first half of the twentieth century in some

contries and was finally deleted from the official listing of psychiatric disorders in 1974 (Bayer and

Spitzer, 1982). However, in some other cultural contexts and historical times, homosexuality was

considered as a personal preference. On the contrary, osteoporosis, which causes bones to become weak

and brittle, was not officially recognized as a disease by the WHO until 1994 (World Health Organization

1994). Regardless of all these varied cognitions of diseases, the main element in identifying diseases is

the biological function which contributes to survival and reproduction (Scully 2004; Lewens and

McMillan 2004). The most notable definition of diseases based on biological theory is from Christopher

Boorse – “Apart from universal environmental injuries, diseases are internal states that depress a

functional ability below species-typical levels” (Boorse 1975; 1977). Although the biological definition of

diseases is not perfectly applicable in all circumstances, it is still largely adopted in practice and fits most

common sense. Here, we relied on expert-curated biomedical databases to get human non-infectious

diseases and their associated genes (Piñero et al. 2015; Landrum et al. 2014; Buniello et al. 2019; The

UniProt Consortium 2014). These phenotypes may not all perfectly fit the biological definition, however,

a majority of these phenotypes are likely to decrease fitness in humans.

In the past ten years, Genome-Wide Association Studies or GWAS have dramatically advanced the

understanding of the genetic basis of many diseases (Rappaport et al. 2013). Thousands of human genes

have now been associated with Mendelian diseases (Piñero et al. 2015; 2020) and tens of thousands of

variants are found to be associated with complex diseases (Claussnitzer et al. 2020). It seems that all

genes have the potential to carry pathogenic mutations and may be associated with diseases, especially

with complex diseases. More and more pathogenic variants are being found for both common diseases

and rare diseases. With the increasing data, we know that not all genes have the same risk of having

pathogenic variants, but it is not clear why specific genes are at higher risk of carrying disease variants.

Moreover, we need to be aware that we are not likely to observe all the possible mutations let alone their

multiple possible  combinations. The pathogenic variants that we observe are the result of evolutionary

8

https://pubmed.ncbi.nlm.nih.gov/7040544/
https://pubmed.ncbi.nlm.nih.gov/7040544/
https://www.zotero.org/google-docs/?5nwIVm
https://www.zotero.org/google-docs/?5nwIVm
https://www.zotero.org/google-docs/?1Qp3ap
https://www.zotero.org/google-docs/?1Qp3ap
https://www.zotero.org/google-docs/?v9SwNt
https://www.zotero.org/google-docs/?6b9If2
https://www.zotero.org/google-docs/?6b9If2
https://www.zotero.org/google-docs/?OczBAg
https://www.zotero.org/google-docs/?92T8pa
https://www.zotero.org/google-docs/?Z8Ppaq


history, attributes of the organism, environments and behaviors. This complexity of diseases highlights

the importance of studying the origin of diseases and evaluating the fitness effects of mutations.

1.1.2 The basis of adaptation and methods to detect adaptation

Adaptation is a key evolutionary process driven by the tendency that a favored character can increase in

frequency under positive selection (Darwin and Wallace 1858). Deciphering the process and detecting

signals of adaptation have  been central goals in evolutionary biology. In Haldane’s deterministic model, a

favored character can increase in frequency and may finally replace all the other alternative characters

(Haldane 1924). However, not all the favored variants will be fixed in the population. For example,

favored variants may fail to fix because of environmental changes and the variant is no longer favored, or

the interference between the beneficial variants and deleterious variants stopped it from further increasing

in frequency. In empirical analyses, we may also observe an emerging beneficial variant on the way of

increasing frequency.

Fortunately, positive selection that didn’t drive the beneficial variant all the way to fixation is still

detectable. A beneficial variant that increases fast to a high frequency will also take the linked variants to

a high frequency. These linked variants can increase to a high frequency in a short time compared to

slowly increasing neutral variants that are not linked to beneficial variants. Thus, during this shorter time,

fewer mutations and recombinations happen in the linked region. Therefore, a lower genetic diversity

(Smith and Haigh 1974; Nielsen et al. 2005) and a long-range linkage-disequilibrium (Sabeti et al. 2002)

will be observed around the selected variant. This decrease of standing variation in regions linked to a

recently selected beneficial mutation is known as a “selective sweep”. We are able to detect positive

selection through detecting the signals of selective sweeps. However, the signals of selective sweeps

decay over time. Accumulated recombination gradually breaks the linkage between loci and new

mutations increase the genetic diversity. Current methods such as iHS (Voight et al., 2006) and nSL

(Ferrer-Admetlla et al., 2014) , which are used in this work, detect positive selection that happened at

most 50,000 years ago (Sabeti et al. 2006). More recent methods may be able to extend the time to 5000

generations which is about 140,000 years (Lauterbur, Munch, and Enard 2022). This time limitation is

however informative in telling us when positive selection happened and thus, we can quantify recent

adaptation by the signals of selective sweeps. In proteins, older positive selection can be detected by

identifying an excess of fixed non-synonymous mutations. For example, using chimpanzees as an

outgroup, approaches such as the McDonald-Kreitman test (MK test) (McDonald and Kreitman 1991)

capture the cumulative signals of positive selection since humans and chimpanzees had a common
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ancestor, likely more than 6 million years ago (Sarich and Wilson 1967; Langergraber et al. 2012; Katoh

et al. 2016). Other methods based on codon-substitution models (Goldman and Yang 1994) are also

widely used to detect old adaptation, such as the branch-site test, which is a likelihood ratio test that

detects positive selection along prespecified lineages of a phylogeny, by identifying accelerated

nonsynonymous substitutions in aligned codons (Goldman and Yang 1994; Yang 1998; Yang and Nielsen

2002; Yang and dos Reis 2011).

The power to detect the signal of selective sweeps can be influenced by many factors, for example,

recombination rate. In addition, other evolutionary processes can also confound the signal of selective

sweeps. For example, negative selection against deleterious variants can also decrease the genetic

diversity of linked locus (background selection) (Charlesworth, Morgan, and Charlesworth 1993). The

demographic history, such as population expansion and reduction can also confound the signals of

positive selection (Nielsen 2001; Macpherson et al. 2008; Pickrell et al. 2009; Torres, Szpiech, and

Hernandez 2018; Cuadros-Espinoza et al. 2022). Thus, we should be careful about these confounding

factors when studying positive selection. In addition to controlling confounding factors between test and

control genes, the comparative approach I used systematically, where I compare large groups of genes in

the same genome, solves a number of issues such as confounding by demography (the compared groups

have experienced the same demography on average).

The ability to detect recent and old positive selection strongly supports the prevalence of adaptation in

humans and other species. These discoveries about genomic adaptation and the development of methods

for detecting positive selection are fundamental for us to further explore the interplay between adaptation

and human diseases.

1.1.3 Evolutionary processes influence the risk of diseases

The risk of diseases is influenced by the genomic architecture, biological and non-biological

environments, and behaviors (Benton et al. 2021). Mendelian genetic diseases are usually due to

variations in a single gene. Instead, complex diseases, such as diabetes, are associated with genetic and

environmental factors. Current genetic variants interact together with environments to determine disease

risks in human populations. Over evolutionary time scales, the current composition of human genomes

and allele frequencies has been shaped by  past evolutionary events, such as migration out from Africa

(Groucutt et al. 2015; Beyer et al. 2021), adaptation to agriculture (Mathieson and Mathieson 2018), past
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pandemics (Klunk et al. 2022) and other unknown  events. These evolutionary processes reflect the

interactions between humans and environments in the past and are thus informative to understand the

biological function and environmental factors involved in different diseases. Therefore, the emerging field

of evolutionary medicine, which integrates evolutionary perspectives into clinical studies, seeks to

identify disease-associated variants, find underlying mechanisms, and promote clinical treatments.

Although we cannot completely decipher the comprehensive connections between all evolutionary events

and human diseases, recent studies have found evolutionary perspectives helpful in understanding the

mechanisms of diseases. Adaptation, as an evolutionary process that closely connects organisms and

environments, provides a framework for understanding the origin of diseases. For example, environmental

shifts can increase the risk of diseases. The variants that are neutral or beneficial in the past environment

might not fit the current environment. This mismatch is happening to the human population whose living

environments have dramatically changed in very recent hundreds of years. It has been found that the

variants that are metabolically beneficial in times of starvation, however, increased the risk for obesity in

many current human populations due to the easy access to  higher-calorie foods (Minster et al. 2016;

Corbett et al. 2018). In this case, obesity associated with these variants can be probably treated by

adjusting behaviors. In my work, I show that the adaptation process is deeply connected to the risk of

diseases and studying this connection is also helpful to understand biological functions involved in

different diseases.

Understanding how past evolution influences the current diseases and the frequencies of disease variants

help us better understand the origin of diseases. We can thus better predict the reproducibility of diseases

association results in different populations which influence the transferability with diseases studies

between populations or even species. Studying the causal reasons of diseases from the evolutionary

perspective provides clues on treatment and serves as a conceptual foundation for precision medicine.

1.2 Explanation of dissertation format

The next chapter is a summary of three first-author papers focusing on addressing the connection between

adaptation and human diseases. The first one improved a comparative method, and the other two papers

used the method to study the interplay between adaptation and non-infectious diseases and infectious

diseases specifically. In the first paper, we discuss and solve issues in gene set enrichment tests, especially

for comparing recent genomic adaptation, by controlling for confounding factors and running the test in

combination with block-randomized genomes. The second points out that the interference between
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deleterious and beneficial variants can impede adaptation and thus cause a deficit of recent adaptation in

human disease-associated genes. The last draft addresses that a large portion of adaptation, especially

strong adaptation, against past viral infection happened through changing host protein stability.

The first paper needs to be resubmitted, the second paper has been published and the third paper will soon

be a preprint. My contribution to each of the papers will be explained at the end of each summary section.
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Chapter 2: Present Study
The methods, results, and conclusions of this study are presented in the papers appended to this

dissertation. The following is a summary of the most important findings of these papers. The figures,

tables and references refer to the corresponding items in the attached manuscripts.

2.1 Gene set enrichment analysis of genome scans for positive selection

Gene Set Enrichment Analysis (GSEA) is frequently used to extract biological information from a set of

genes of interest (Mootha et al., 2003) through comparison with a set of control genes. This comparison

finds enriched biological features in genes of interest and provides an interpretation for the experiment

that identifies the gene set of interest. Biological features used to conduct a GSEA are very diverse,

ranging from discrete functional annotations such as those provided by the Gene Ontology Consortium

(Gene Ontology, 2015), to continuous, quantitative annotations such as the gene expression level or

evolutionary conservation level of genes. Here, focusing on selection signals, we argue that the power of

GSEA is largely limited by the outlier approach that has been widely used to identify candidate selected

loci. We further detail a number of other issues with the way GSEA of recent adaptation has typically

been conducted, especially a general neglect of confounding factors. To solve these issues, we provide a

solution that matches confounding factors in controls and uses GSEA in combination with

block-randomized genomes. These improvements of GSEA makes it a more effective tool to interpret

human genomic data. We also suggest that there is ample room for improvement to make GSEA an

important tool to interpret the vast amount of ecological genomics data. In this paper we further show

how to use bootstrap test together with block randomized genomes in GSEA, using the comparison of

selective sweeps in human proteins that physically interact with viruses (VIPs for Virus-Interacting

Proteins) and proteins not known to physically interact with viruses (non-VIPs).

2.1.1 Problems of the outlier approach

GSEA emerged ~20 years ago and is still being improved up to this day. At that time, population

geneticists rapidly adopted GSEA to try to make biological interpretations of candidate genes that are

identified for natural selection by the first human genome-wide genetic variation datasets (Gibbs et al.

2003). In order to identify a set of candidate selected genes, population geneticists used, and still use to

this day, the outlier approach. This approach identifies genes whose values of summary statistics sensitive

to positive selection are unexpected under the demographic history of the studied population alone. Using

13

https://www.zotero.org/google-docs/?Gdmng5
https://www.zotero.org/google-docs/?Gdmng5


this approach, early study found enriched selection in immune genes since humans split from

chimpanzees (Bustamante et al. 2005). However, older scans for more recent selection, in the form of

selective sweeps, often failed to detect these enrichments, likely due to lower statistical power. The lower

power may result from a combination of reasons, such as, less versatile and less powerful sweep detection

statistics. On top of this, a main issue of the outlier approach has the potential to severely decrease the

power of GSEA in selective sweeps. The statistics of weaker or older sweeps may not fall outside of the

neutral range and thus only leaving the opportunity for very strong, unusual sweeps to be detected by the

outlier approach. Fortunately, new statistical developments such as powerful sweep detection by machine

learning (Schrider and Kern 2017; Sugden et al. 2018), and a greater focus on the whole distribution of

summary statistics in entire groups of genes (Josephine T. Daub et al. 2015; J. T. Daub et al. 2017; Gouy,

Daub, and Excoffier 2017), instead of a focus on single candidate genes, have greatly reduced the

problematic reliance on the outlier approach.

2.1.2 Accounting for confounding factors

Persistent issues with the way that GSEA of recent selection scans conducted today still exist, and results

in a risk of false biological interpretations. For example, both in the specific case of genome scans for

selection and more broadly, GSEA have been conducted with very little consideration for potential

confounding factors. More often than not, gene sets of interest and control genes often differ in many

other factors than just belonging or not to that particular biological function. These factors may also

influence positive selection and will confound the enrichment test. For example, gene length, one of the

few confounding factors often but not always taken into account, can bias enrichment tests due to a

greater preponderance of long genes to overlap with selective sweep regions in the genome (Pavlidis et al.

2012). We can alleviate the problem of confounding factors by using control sets that match the tested

gene set with regard to confounding factors. The effects of confounding factors on selective sweeps are

canceled out after matching the genes of interest with control genes with the same values of confounding

factors. The idea is to progressively add control genes to a growing control set until it has the same size as

the gene set of interest, while checking that the growing control set matches the set of interest for the

desired confounding factors (Fig. 2).

2.1.3 Clustering of genes in selective sweeps

Selective sweeps, and in particular large selective sweeps, can overlap not just one but multiple

neighboring genes, as is for example the case of the lactase sweep (Bersaglieri et al. 2004; Tishkoff et al.
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2007). Correlated sweep summary statistics are thus expected between neighboring genes. Therefore,

applying a simple permutation test or the Fisher’s Exact test with GSEA to find a significant sweep

enrichment is potentially inconclusive for two reasons. First, the power of the test is limited because a

large sweep can include both test and control genes. This limitation is even worse when the test gene set

is way smaller than the control gene set. Second, the variance of the expected null distribution, that is the

distribution of the number of genes expected in a sweep under no enrichment, is increased because of

gene clusters in the same selective sweep.

In order to avoid too many control genes overlapping with the same sweeps as the genes of interest, and

thus decreasing the power of the GSEA, we sample control genes that are far enough from the genes of

interest. However, this process, in addition to the process of matching confounding factors, limits the

number of control genes that can make the enrichment test too liberal or too conservative. Fortunately,

block-randomized genomes is a simple solution to all of these issues. Block-randomized genomes are

genomes of which the order of genes has been shuffled randomly. However, instead of simply shuffling

genes individually, large blocks of contiguous genes are shuffled. Thus, the actual order of genes are

preserved within each of these large blocks (Fig. 5). For example, we split human genes into 100 blocks

(each with the same number of genes) based on their order on chromosomes, and then randomly shuffled

these 100 blocks. Because the expected number of genes in sweeps, even in the largest sweep, is much

smaller than the number of genes in each block, the block-randomized genomes largely preserve the

original clustering structure of genes in sweeps observed in the real genome. Using a large number of

block randomized genomes, it is then possible to get a null distribution of the expected number of genes

in sweeps given the same clustering structure. By counting the numbers of genes in sweeps at the original

locations of both genes in the set of interest and the control genes, we can get the null distribution of

sweep enrichment (Fig. 6). The number of genes in the set of interest and the number of control genes are

exactly the same as in the real genome, and thus we can estimate the null expected enrichment

distribution while fully accounting for the extra variance observed in the bootstrap test due to the effect of

the sizes of control sets. Therefore, contrary to using the bootstrap test p-values alone, the block

randomized genomes allow to estimate an actual, unbiased false positive risk that takes both clustering

and the size of the bootstrap test control sets into account. In summary, block randomized genomes

account for clustering, biases of the bootstrap test, and avoid relying on the outlier approach in the context

of GSEA.

2.1.4 Contributions to the work presented in Appendix A
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The inspiration for the work presented here and in Appendix A was from David Enard. The script used in

this work is modified from David Enard’s previous work. All data analysis was performed by me and the

first draft of the paper was written by me. Substantial editing was done by David Enard.

2.2 Decreased recent adaptation at human Mendelian disease genes as a possible

consequence of interference between advantageous and deleterious variants

In the past ten years, Genome-Wide Association Studies or GWAS have dramatically advanced the

understanding of the genetic basis of many diseases (Rappaport et al. 2013). Thousands of human genes

have now been associated with different diseases (Piñero et al. 2015; 2020). However, despite this fast

development and despite the fact that multiple evolutionary processes might connect disease and genomic

adaptation at the gene level, the potential causal relationships between disease and genomic adaptation are

currently unclear, especially in the case of recent genomic adaptation. A gene may have a higher risk of

being associated with disease after recent adaptation because deleterious mutations may hitchhike

together with advantageous mutations. If this process was sufficiently widespread, disease genes might

exhibit more recent adaptation than non-disease genes. Alternatively, disease genes might adapt more

slowly compared to non-disease genes. For example, variants that were neutral in a stable environment

might be deleterious in a new environment and thus cause diseases. It takes time for new adaptive

mutations to happen and achieve a new phenotypic optimum. If this process is the dominant reason of

associating with diseases, we will observe less recent adaptation in disease genes compared with

non-disease genes. However, genes may also be more likely to associate with diseases and evolve more

slowly because of being more constrained. We have known that disease genes are more constrained

(Blekhman et al. 2008) but this fact represents a consequence of varying constraint between genes and

says little specific about disease genes. Thus, in order to find relationships between adaptation and disease

beyond the simple effect of constraint, we compare disease genes with non-disease genes in the same

level of constraint.

2.2.1 Less recent adaptation in disease genes

We compare the rate of strong recent adaptation in the form of selective sweeps between Mendelian,

non-infectious disease genes and non-disease genes across distinct human populations from the 1000

Genomes Project. We measure recent adaptation around human protein coding genes using the integrated

Haplotype Score iHS (Voight et al. 2006) and the number of Segregating sites by Length nSL

(Ferrer-Admetlla et al. 2014) which detect sweeps correspond to a time window of at most 50,000 years

(Sabeti et al. 2006). Using the Gene Set Enrichment Analysis (GSEA) described above, we find a strong
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significant depletion in sweep signals at disease genes, especially in Africa (False Positive Risk =3* ,10−4

Figure 3A). We find that Mendelian disease genes have experienced far fewer selective sweeps compared

to non-disease genes especially in Africa.

2.2.2 Disease genes do not experience less long-term adaptation

What will be the possible causes of the sweep deficit at disease genes? Disease genes may have a

constitutive tendency to experience fewer adaptive mutations because of a higher pleiotropy (Otto 2004),

and/or because the new mutations in Mendelian with large effect (Quintana-Murci 2016) tend to

overshoot the fitness optimum, and thus unlikely to be beneficial. Regardless of the underlying processes,

this tendency predicts not only less recent adaptation but also a deficit of long-term adaptation during

evolution.

To test whether Mendelian disease genes experienced less long-term adaptation, we use the

McDonald-Kreitman test based method ABC-MK (Castellano et al. 2019) and GRAPES (Galtier 2016) to

capture the cumulative signals of adaptive events since humans and chimpanzees had a common ancestor,

likely more than 6 million years ago. We compare the proportion of adaptive non-synonymous

substitutions in Mendelian disease genes with non-disease controls and find no significant difference

between disease and control non-disease genes (Figure 5A,B,C,D,E). This result indicates that Mendelian

disease genes do not have constitutively fewer adaptive mutations. Processes that are stable over

evolutionary time such as a higher pleiotropy, or overshooting the fitness optimum, may not result in the

sweep deficit at disease genes. Moreover, based on this result, we can also exclude that purifying

selection in constrained genes alone can explain the sweep deficit at disease genes, because purifying

selection would then also have decreased long-term adaptation. These results suggest that more transient

evolutionary processes impede disease genes from adapting as fast as the rest of the genome.

2.2.3 A possible role of interference of deleterious mutations

An obvious difference between Mendelian disease versus non-disease genes is that we have found

segregating disease variants in disease genes and a majority of disease variants are recessive (Amberger et

al. 2019; Balick et al. 2015). Recessive deleterious mutations have been shown to be able to slow down

the linked advantageous mutations from increasing in frequency (Assaf, Petrov, and Blundell 2015) .

Thus, interference between deleterious mutations and advantageous mutations may decrease the recent

adaptations in disease genes. This interference is strongest in regions with many deleterious variants and

low recombination rate. Since the number of deleterious segregating variants at a given locus and
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recombination hotspot are likely to vary over evolutionary time, this process may result in a deficit in

recent adaptation but not in long-term adaptation.

If the number of known segregating disease variants correlates well enough with the known disease

variants in Mendelian disease genes, we will expect the sweep deficit to be particularly strong at disease

genes with both many disease variants and lower recombination rates. As expected, we find a strong

deficit at disease genes with both low recombination rates and high numbers of associated disease variants

(Figure 6, FPR=8* ), but almost no deficit at disease genes with higher recombination rates or lower10−4

numbers of associated disease variants (Figure 6, FPR=0.74). We also find that deleterious variants or

recombination rates alone is not enough to explain the sweep deficit in disease genes. These observations

together suggest that adaptation in disease genes has been slowed down by the interference of recessive

deleterious variants, especially in low recombination regions.

2.2.4 Contributions to the work presented in Appendix B

The inspiration for the work presented here and in Appendix B was from Chenlu Di and David Enard.

The first draft was written by Chenlu Di, substantial editing was done by David Enard and all the authors

contributed to writing, reviewing and editing for the final published version. Most of the analyses except

for long-term adaptation was done by Chenlu Di. Confounding factors table was prepared by Diego F

Salazar-Tortosa, and analyses of long-term adaptation were done by Jesus Murga Moreno and David

Enard during the revision.

2.3 Stability evolution as a major mechanism of human protein adaptation in

response to viruses

Viruses are a major driver of adaptation in humans and other mammals. Best studied examples are genes,

such as protein kinase R (PKR) and TRIM5, involved in immune functions that can adapt fast against

viral infections (Elde et al. 2009; Rothenburg et al. 2009; Sawyer et al. 2005; Águeda-Pinto et al. 2019).

Case studies also have frequently found positive selection targets on the interacting surface between host

proteins and viral proteins. For example, multiple adaptive changes on the surface of PKR were found to

defeat viral infections (Elde et al. 2009). However, adaptation against viral infections is not limited to fast

evolving immune genes but is more generally found in virus-interacting proteins (VIPs) which are host

proteins interacting with viral proteins (Enard et al. 2016; Castellano et al. 2019). Most (80%) of the VIPs

are not known to have antiviral or broader immune functions (Enard et al. 2016). Moreover, in VIPs, only
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a few percent of amino acid residues are on the interacting surfaces. For example, only ~6% amino acid

residues are at the interacting surface of human proteins interacting with SARS-CoV-2 (Wierbowski et al.

2021). However, the proportion of adaptive substitutions is around 50% in the proteins that interact with

coronaviruses (Figure 4). This gap indicates that the widespread positive selection in VIPs is not restricted

to contact interfaces.

What other protein evolution mechanisms then may drive the widespread positive selection in VIPs?

Mutations may change the host native molecular functions or affect protein conformation. However,

VIPs are conserved proteins whose structures may not change notably across mammals and beyond

(Castellano et al. 2019). Repeated changes in host native molecular activities and protein conformation

might thus be less likely to happen and explain frequent adaptation in VIPs (Lee, Redfern, and Orengo

2007; Radivojac et al. 2013; Konaté et al. 2019). Instead, evolution in protein stability, that is the

abundance of the folded, functional form of proteins, may be more likely to happen to conserved VIPs

because of the following two reasons. First, many amino acid changes in many parts of a protein can

change stability, including parts that outside of evolutionarily conserved active sites of VIPs

(Goldenzweig and Fleishman 2018; Stein et al. 2019; Li et al. 2020). This large pool matches with the

large amount of adaptation found in these conserved VIPs. Second, multiple lines of evidence have shown

that changes in protein stability can influence biological processes and the host fitness (Araya et al. 2012;

Martelli et al. 2016; Gerasimavicius, Liu, and Marsh 2020; Cagiada et al. 2021; Høie et al. 2022).

Here, we hypothesize that adaptation against past viral infections might happen by changing protein

stability in virus-interacting proteins (VIPs). To test if protein stability was the dominant driver of

adaptation in VIPs, we ask if substitutions that significantly changed stability have (i) experienced more

positive selection in VIPs compared to control non-VIPs, and (ii) experienced more positive selection

compared to substitutions that altered stability to a lesser extent.

2.3.1 Abundant stability-changing, adaptive substitutions in VIPs

We use a recent version of the McDonald-Kreitman test (McDonald and Kreitman 1991) called ABC-MK

(Urrichio et al. 2019) to estimate the proportion of adaptive amino acid substitutions based on coding

sequence substitutions that occurred specifically in the human branch since divergence with chimpanzees

(Methods), and variants from the 1,000 Genome projects groups located in Africa (Auton et al. 2015;

Urrichio et al. 2019). We also need to know the protein stability changes caused by substitutions and

variants. However, it is currently impossible to measure experimentally protein stability changes in the
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scale of tens of thousands of proteins and millions of amino acids mutations. Thus, we estimate stability

changes caused by amino acid substitutions and variants (Figure 1A,B) using the computational method

ThermoNet, one of the best performing machine-learning methods for estimating the protein stability

changes by extracting protein properties from protein structures. The protein structures are from Alpha

Fold and we only focus on orthologs across mammals with high-confidence structures (Jumper et al.

2021; Varadi et al. 2022, 2) which are 2900 out of ~5500 VIPs and 5700 non-VIPs (Table S1:

https://www.biorxiv.org/content/biorxiv/early/2022/12/01/2022.12.01.518739/DC2/embed/media-2.xls?do

wnload=true).

We find that the proportion of adaptive amino acids in VIPs is elevated in mutations that cause large

stability changes compared to mutations that change stability to a lesser extent. We call the mutations

which cause stability changes above the median the Large Stability Changes group (LSC), and the group

below the Small Stability Changes group (SSC). In VIPs, the proportion of adaptive non-synonymous

substitutions in LSC is 34% versus only 15% in SSC. In addition, in LSC, the adaptation rate for VIPs is

significantly higher than control genes (p-value=3.01 ) which are shuffled VIPs and control×10−4

non-VIPs (Figure 2). Although the adaptation rate for VIPs in SSC is still higher than control genes

(p-value=4.38 ), the p-value is two orders of magnitude larger than the p-value for LSCs. Notably,×10−2

the elevated adaptation rate in LSC is mostly driven by strongly beneficial mutations. The proportion of

adaptive non-synonymous substitution contributed by strongly beneficial mutations is 27% compared

with a total of 34%. We further calculate the number of strong adaptive substitutions driven by viruses

and largely changing the protein stability. We calculate the number by minus strong adaptive substitutions

in matched non-VIPs from VIPs and we get 177 in LSC and 42 in SSC. Thus, 81% (=177/(177+42))

strong adaptive substitutions are driven by viruses and largely change the protein stability.

2.3.2 Stability explains increased VIP adaptation at buried residues

We note that mutations happening at less exposed sites which have lower relative solvent accessibility

(RSA) are more likely to cause large stability changes (Tokuriki et al. 2007). This correlation might

confound the results and the stability might be a by-stander factor of RSA in terms of contributing to

adaptation in VIPs. As expected, we find that VIPs have experienced more adaptation in the buried (39%)

than exposed parts (19%) of their protein structure (Figure 3A, B). If stability is a by-stander, we will

expect to see no difference in LSCs and SSCs in buried parts. However, the elevated adaptation in the

buried parts of  VIPs is strongly dependent on protein stability. The LSCs in the buried parts have strongly

elevated adaptation (40%) in VIPs compared to control genes ( Figures 3D and FigureS2:
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https://www.biorxiv.org/content/biorxiv/early/2022/12/01/2022.12.01.518739/DC1/embed/media-1.pdf?d

ownload=true ), while all SSCs in the buried parts only have 10% adaptive substitutions, not different

from control genes (FDR=0.31) (Figure 3F). We also observe a slightly higher adaptation in LSCs (28%)

at the exposed sites compared to SSCs (20%). Together, these results suggest that protein stability changes

is the major driver of increased adaptation in VIPs, especially of strong adaptation, in more buried parts.

This also narrows down the possible mechanisms explaining the elevated adaptation in VIPs, since more

buried parts are also less likely to actively interact with other molecules.

2.3.3 Increased stability-changing adaptive substitutions response to more RNA than DNA viruses

We further confirm the results by VIPs interacting with different viruses and participating in different

biological functions. Previous work found particularly strong and abundant selection during human

evolution in VIPs that interact with RNA viruses whose genome is coded by RNA but not in VIPs that

interact with DNA viruses (Enard and Petrov 2018; 2020; Souilmi et al. 2021). If protein stability changes

is the major mechanism of adaptation to past viral infections, we will expect to observe elevated

adaptation in LSCs particularly for VIPs interacting with RNA viruses. In agreement with this prediction,

we find significantly increased adaptive LSCs in their specific VIPs (compared to control genes, Table 1)

in seven out of nine tested RNA viruses and only one of the six tested DNA viruses, Kaposi’s sarcoma

Herpesvirus KSHV (Table 1) which has strongly elevated adaptation rate in its specific VIPs (Enard et al.

2016). Moreover, we observe directional selection of protein stability in immune antiviral VIPs whose

optimum may frequently shift and stabilizing selection in proviral VIPs which have many broadly

conserved non-immune host native functions.

In conclusion, we find that protein stability evolution may have been an important mechanism of human

adaptation in response to viruses. Our results show that the studying positive selection of quantitative

patterns in VIPs as a whole group can provide new insights on molecular mechanisms that hosts applied

to adapt repeatedly to viral infections.

2.3.4 Contributions to the work presented in Appendix C

The inspiration for the work presented here and in Appendix C was from David Enard. The attached draft

was written by Chenlu Di and David Enard and figures are made by Chenlu Di. Most of the analyses were

done by Chenlu Di. The analysis about compensatory adaptation was done by David Enard. Jesus Murga

Moreno helped with using ABC-MK.
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2.4 Conclusion

Adaptation happened in the further past and recent times deeply influenced the risk of diseases in current

human populations. In my dissertation, I find a dominant relationship between recent adaptation and

human non-infectious diseases. Focusing on Mendelian non-infectious disease genes, I find a strong

deficit of recent adaptation in disease genes compared to the rest of the genome. This deficit might be due

to the interference from recessive deleterious variants. In low recombination regions, linked deleterious

variants impede the emerging beneficial variants from increasing in frequency. These genes thus cannot

adapt fast to changing environments and are therefore associated with diseases.

I also find that disease genes do not adapt more slowly than other genes in the long term. Insead of never

being able to adapt, disease genes may adapt more slowly in a transient stage because of pre-existing

attributes of being more vulnerable to mutations. This high risk of having deleterious variants can

possibly be driven by strong past adaptation that largely changed phenotypes. Focusing on human

proteins interacting with viruses, which strongly adapted in response to past viral infections, I find that

strong past adaptation in VIPs mostly happened through large changes to protein stability. The changes of

protein stability influences the abundance of folded functional proteins and may thus affect host fitness.

Although I haven’t directly connected the past strong adaptation in VIPs with the risks of diseases, I find

evidence showing that VIPs may be at the edge of or fall out from its optimum stability after strong

adaptation. For proviral proteins, compensatory substitutions may help VIPs to stay in stable stability

after epidemics. This process usually needs multiple substitutions and thus during this period of time,

proteins may be more sensitive to mutations that change the stability in an unfavored direction. However,

further studies about VIPs that are associated with diseases are needed to test this hypothesis.

In addition, the dominant relationship we found between adaptation and diseases and the main protein

property that drives adaptation in response to past viral infections are not mutually exclusive from other

mechanisms. Instead, I present a way to investigate the origin of diseases by disentangling the

complicated evolutionary processes that interact in a temporal (past recent and now)  and “spatial”

(different genes in the whole genome) manner. This work points out a possible connection between

adaptation and human disease and highlights insights from evolutionary biology to human health and

disease.
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Abstract

Gene Set Enrichment Analysis (GSEA) is often used to attempt making biological sense of genome scans

for recent adaptation in humans and a growing number of other species with available genome-wide

variation information. This approach has had several issues in the past, among which a substantial risk of

storytelling and limited statistical power. Here, we provide an updated perspective on the past limitations

of GSEA of recent genomic adaptation in the light of the most recent progress made in the area of genome

scans for natural selection. We argue that the past limitations of GSEA of recent adaptation were largely a

reflection of the limitations of the outlier approach that has been widely used to identify candidate loci.

We further detail a number of other issues with the way GSEA of recent adaptation has typically been

conducted, including a general neglect of confounding factors. We provide evidence that using GSEA in

combination with block-randomized genomes solves many of these issues. Even though GSEA has had

limited success in the past, we suggest that there is ample room for improvement to make GSEA an

important tool to make sense of the vast amount of ecological genomics data that is already available.

Introduction

In genomics, Gene Set Enrichment Analysis (GSEA) is one of the most frequently used methods to

extract biological information from a set of genes of interest (Mootha et al., 2003). GSEA aims at

providing a biological interpretation for an experiment that identified a gene set of interest, by identifying

biological features that are significantly enriched or depleted within that gene set, compared to a set of

control genes. Often the set of control genes is the rest of the genome not included in the gene set of

interest. The biological features used to conduct a GSEA are very diverse and can range from discrete

functional annotations such as those provided by the Gene Ontology Consortium (Gene Ontology, 2015),

to continuous, quantitative annotations such as the length or evolutionary conservation level of genes.

GSEA originated ~20 years ago in response to the fast-growing need to make sense of sets of candidate

genes identified by the then popular microarray studies, and is still being improved up to this day
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(Al-Shahrour et al., 2006; Alonso et al., 2015; Curtis et al., 2005; Hukku et al., 2020; Hung et al., 2012;

Kim and Volsky, 2005; Mootha et al., 2003). At that time, GSEA was most typically used to provide

biological interpretations for sets of genes that had been found to be differentially expressed by

microarray expression comparisons between two experimental conditions (for example, treatment vs.

placebo, K.O. vs. wild-type mice, etc.).

The introduction of GSEA happened to coincide closely with the release of the first publicly available

human genome-wide genetic variation datasets (International HapMap, 2003). Seizing the opportunity,

population geneticists rapidly adopted GSEA to try to make biological sense of the candidate genes they

had identified by conducting the first genome-wide scans for natural selection in the human genome. For

example, in 2005 Bustamante et al. (Bustamante et al., 2005) used GSEA to identify which biological

functions were enriched among genes with elevated amounts of positive or negative selection in their

coding sequences. Among all the significantly enriched biological functions found by Bustamante et al.,

gametogenesis (the production of gametes for reproduction) and the immune response were particularly

expected, given the large body of evidence on pathogen and reproductive selective pressures during

evolution. This provided one of the first validations of the GSEA approach used to make biological sense

of patterns of natural selection in the human genome. While Bustamante et al. had been focusing on

natural selection in human coding sequences since the split of human and chimpanzee lineages from their

common ancestor, multiple other studies were published that focused on finding enrichments for recent

positive selection in the form of selective sweeps (a reduction of linked neutral diversity near positively

selected mutations) (Barreiro et al., 2008; Carlson et al., 2005; Sabeti et al., 2006; Sabeti et al., 2007;

Tang et al., 2007; Voight et al., 2006; Williamson et al., 2007). Although the different scans for selective

sweeps did not always identify gametogenesis genes and immune genes as enriched in recent positive

selection, more recent and powerful scans have unambiguously shown that these two functions are indeed

strongly enriched for selective sweeps signals (Enard and Petrov, 2020; Schrider and Kern, 2017). Older

scans for selective sweeps often failed to detect these enrichments likely due to lower statistical power,

resulting from a combination of smaller samples of genotyped individual genomes, high levels of

ascertainment bias (Clark et al., 2005), less versatile and powerful sweep detection statistics, and very

incomplete Gene Ontology functional annotations at the time (Skunca et al., 2012; The Gene Ontology,

2019).

The statistical power of GSEA of early scans for selective sweeps was also likely affected by the

widespread use of the so-called outlier approach (Kelley et al., 2006; Teshima et al., 2006; Thornton and

Jensen, 2007). In order to identify a set of candidate selected genes, population geneticists used -and still
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use to this day- the outlier approach, which consists in identifying genes in the genome whose values of

summary statistics sensitive to positive selection cannot be expected under the demographic history of the

studied population alone. The expected null distribution of the selection-sensitive summary statistic in the

absence of natural selection is usually determined by running population simulations under demographic

models that are supposed to match the actual demographic history of the studied population as closely as

possible. The two main issues with this approach are that (i) there is no guarantee that the demographic

models used to determine the values of a statistic under neutral expectations are accurate, and the fact that

(ii), there is no reason to expect that weaker selective sweeps, or older selective sweeps, should fall

outside of the neutral expected range of summary statistics. The latter issue has the potential to severely

limit the power of the outlier approach, especially when the expected neutral range overlaps with a large

range of possible selective sweeps, leaving only the opportunity for very strong, unusual sweeps to be

detected.

In the context of GSEA, the limitations of the outlier approach were self-imposed and could have largely

been avoided. In fact, because false positive sweeps due for example to past demographic events are

expected to occur at random in the genome and are certainly not expected to preferentially target specific

biological functions, GSEA would have still identified genuine functional enrichments even when using

sets of sweep candidates with some level of false positives. In this respect, the GSEA of recent positive

selection in the human genome would have benefited from balancing the widespread concern for false

positives, with an equal concern for false negatives generated by the low statistical power resulting from

the outlier approach. Gouy et al. and Daub et al. clearly identified this power issue, and proposed a

number of approaches to better detect moderate selection signals in the context of GSEA (Daub et al.,

2015; Daub et al., 2017; Gouy et al., 2017).

Since the early examples of the use of GSEA to interpret genome-wide scans for selected genes,

genome-wide genetic variation datasets have become much larger and much more common in a large

number of species, well beyond the few evolutionary model species such as humans or Drosophila. At the

same time, new statistical developments such as powerful sweep detection by machine learning (Schrider

and Kern, 2017; Sugden et al., 2018), and a greater focus on the whole distribution of summary statistics

in entire groups of genes (Daub et al., 2015; Daub et al., 2017; Gouy et al., 2017), rather than a focus on

single candidate genes, have greatly reduced the problematic reliance on the outlier approach. The rapid

increase in the availability of whole genome datasets has made genome-wide scans for natural selection

very popular, especially in the context of domestication genomics and in the context of ecological

genomics, where natural positive selection plays a central role. More specifically, many new genome
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scans for selection in diverse species seek to identify genes that have experienced recent positive selection

in the form of selective sweeps, and then attempt to interpret the biological relevance of candidate sweeps

thanks to GSEA. There are however persistent issues with the way that GSEA of recent selection scans

are still conducted today, with as a result a risk of false biological interpretations. Both in the specific case

of genome scans for selection and more broadly, GSEA have for example been conducted with very little

consideration for potential confounding factors. Moreover, in the specific context of genome scans for

selective sweeps, additional issues arise that are related to the clustering of multiple genes in large

selective sweeps.

Here, we assess the current problematic GSEA practices when conducted in the context of genome-wide

scans for selective sweeps. We then highlight solutions, and we more specifically suggest that

block-randomized genomes represent a simple solution to many of the issues discussed. Throughout the

paper we further provide a detailed example of the use of a bootstrap test together with block randomized

genomes when comparing sweeps in human genes that code for proteins that interact physically with

viruses (VIPs for Virus-Interacting Proteins), with genes that code for proteins not known to interact

physically with viruses (non-VIPs).

Main issues of GSEA of genome scans for selective sweeps: confounding factors and the clustering

of genes in the same sweeps

Confounding factors

One problematic GSEA practice derives from the fact that genes within, and control genes outside of the

biological function of interest being tested, often differ in many other ways than just belonging or not to

that particular biological function. For example, the thousands of human genes known to interact

physically with viruses (Virus-Interacting Proteins or VIPs), differ from genes not know to interact with

any virus (non-VIPs) in many other different ways, including higher expression levels or higher levels of

selective constraint and conservation (Enard et al., 2016; Enard and Petrov, 2018). It is then easy to

imagine a hypothetical case where an enrichment in selective sweeps at genes that interact with viruses

would result not from causal interactions with viruses, but from the correlated fact that highly expressed

genes are in general enriched for sweeps, and genes that interact with viruses just happen to be highly

expressed genes.

Genes in a biological function and the control genes used as comparison to measure an enrichment can

thus differ in many other ways, that can act as confounding factors when interpreting the enrichment in

26



positive selection of specific biological functions. Unfortunately, very little attention has usually been

paid to address the potential confounding factors that can differ between the genes in the biological

function of interest and the control genes. For example, given the impact of recombination on selective

sweeps signals (O'Reilly et al., 2008), no scan for selective sweeps should ever report biological functions

enriched for sweeps, without verifying first that genes in those functions have different or similar

recombination rates. Indeed, in that case there is a serious risk of confusion between a lower average

recombination rate and a genuine excess of sweep signals (O'Reilly et al., 2008).

Confounding factors can result in spurious interpretations in diverse other ways. For example, gene

length, one of the few confounding factors often but not always taken into account, can bias enrichment

tests due to a greater preponderance of long genes to overlap with selective sweep regions in the genome

(Pavlidis et al., 2012). Although some biological functions may only have a few confounding factors such

as gene length that are easily corrected for, many biological functions are likely to exhibit many

simultaneous confounding factors that may be much more difficult to address. For example, human genes

that interact physically with viruses differ from other genes in the genome for many potential confounding

factors (Enard et al., 2016; Enard and Petrov, 2018). Perhaps more problematic in this specific example is

the fact that genes that interact with viruses, compared to other genes, are also enriched in many host

Gene Ontology biological functions that could drive selective sweeps rather than interactions with viruses

(Enard and Petrov, 2020). These host GO functions notably include the immune response, apoptosis or the

mitotic cell cycle. All these factors clearly need to be considered before concluding that viruses increased

the number of sweeps at virus-interacting genes (Enard and Petrov, 2020). This large number of potential

confounding factors is however problematic, because there might be very few or no control genes at all

that match the genes of interest for all those factors, and that could be used to set a fair comparison

required to estimate an unbiased enrichment genuinely due to interactions with viruses.

After we detail a number of other issues with the GSEA applied to positive selection, we describe in the

second part of this paper (Solving GSEA problems) a bootstrap test to measure positive selection

enrichments while simultaneously accounting for multiple confounding factors all at once.

Clustering of genes in selective sweeps

While confounding factors likely influence any GSEA, GSEA of scans for selective sweeps have the

additional issue of clustering. Selective sweeps, and in particular large selective sweeps, can overlap not

just one but multiple neighboring genes, as is for example the case of the lactase sweep (Bersaglieri et al.,

2004; Tishkoff et al., 2007). Correlated sweep summary statistics are thus expected between neighboring

genes. This makes neighboring genes not independent from each other when it comes to the evidence for
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selective sweeps (Fig. 1). This non-independence makes applying GSEA with a simple permutation test

or the Fisher’s Exact test to find a significant sweep enrichment potentially inconclusive for two reasons.

First, genes from a specific biological function that is genuinely enriched in sweeps are close to other

genes not involved in that function that are typically used as controls. This means that especially large

sweeps increase the number of genes found in a sweep in the gene set of interest, but also in the set of

control genes, which is likely to limit the statistical power to detect significant sweep enrichments. This

power limitation may be especially severe when testing biological functions with many genes spread out

across the genome. Indeed, in that case many “control” genes may actually be close to a gene with the

tested biological function, and will then be included as sweep candidate genes. This is expected to render

the enrichment test severely underpowered. For example, there are currently 5,291 human genes known to

interact with viruses (as of July 2020, latest update by D. Enard), and 6,638 other genes in the genome are

found at a distance less than 100kb form these virus-interacting genes. Although there is a simple solution

that consists in selecting control genes far enough from the genes of interest, this has only been done in

very few cases of GSEA applied to scans for selective sweeps (Enard and Petrov, 2020).

Second, the clustering of multiple genes in the same selective sweep makes simple permutations or the

Fisher’s Exact test inconclusive for GSEA, because the clustering of sweep candidate genes increases the

variance of the expected null distribution of the number of genes expected in a sweep under no

enrichment. To understand why, one can imagine the extreme hypothetical case where a specific

biological function has 100 genes in the genome, and all the 100 genes are found packed together within a

single cluster. In this extreme case, all the 100 genes happen to overlap a strong, highly significant, single

sweep signal. In the entire genome, 1% of genes in total are found in strong sweep signals. In this case, a

simple permutation test or a Fisher’s exact test will conclude that 100% of genes with the tested biological

function in a sweep represents a very strong and significant enrichment compared to the 1% expected by

chance with no enrichment. In this example, an extreme level of clustering is confused with what would

be an extreme enrichment only if all the 100 genes were independent from each other and spread out in

different genomic locations. Although this is an extreme example, even more moderate levels of genes

clustering in the same selective sweeps can also lead to erroneously conclude for a sweep enrichment

when there is none. In the second part of the paper, we describe how block-randomized genomes make it

possible to run GSEA while taking clustering into account.
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Figure 1. Clustering of multiple genes in the same candidate sweep.
Protein coding genes are represented by a dot located at the center of their genomic coordinates on human
chromosome 1. Genes were ranked according to the iHS summary statistic in the 1000 Genomes Project
ACB population. Multiple genes are clearly clustered in the same candidate sweep around 223 Mb.

Solving sweep GSEA limitations combining a confounding factors-aware bootstrap test and

block-randomized genomes

Accounting for confounding factors with a bootstrap test

As discussed above, there are multiple issues with running a naïve GSEA of scans for selective sweeps,

including confounding factors and clustering. We now seek to provide possible solutions to these issues.

More often than not, gene sets of interest differ from the control genes used in a GSEA by more than just

the biological difference of interest that is actually being tested by contrasting a specific gene set with

control genes. For example, when comparing sweeps at genes that interact with viruses with genes that

don’t, the biological difference of interest is the presence/absence of interactions with viruses. But VIPs

also happen for example to have many more interactions in the human Protein-Protein Interaction (PPI)

network, compared to non-VIPs (Enard et al., 2016). Interestingly, Luisi et al. (Luisi et al., 2015) and

Schrider & Kern (Schrider and Kern, 2017) found that human genes with more PPI in the human

interaction network overlap with more selective sweeps than genes with less PPI. In this case, we are not

able to tell whether VIPs are enriched in selective sweeps due to interactions with viruses or due to

interactions with other human proteins, by just running a naïve GSEA. PPIs are thus a potential

confounding factor that can result in a spurious interpretation of the GSEA for selective sweeps between

VIPs and non-VIPs. Other factors such as recombination rate are also correlated with sweep signals, or

the ability to detect sweeps, and can also be confounding factors. The interpretation of the results from a

GSEA is ambiguous without taking confounding factors into consideration.

 

We can alleviate the problem of confounding factors by using control sets that match the tested gene set

with regard to confounding factors. For example, we don’t expect to observe any difference in selective

sweeps between two sets of genes with the same number of PPI if PPI number is the only factor that

influences the number of sweeps. In other words, if PPI are the only confounding factor, any observed

difference in the number of sweeps after matching PPI due to the tested biological feature, must be due to

the latter. The effects of confounding factors on selective sweeps are canceled out after matching the
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genes of interest with control genes with the same values of confounding factors. Then the question is:

how can we build sets of control genes with confounding factors matching the set of interest? For

example, if VIPs have three times more PPIs than non-VIPs, how do we build control sets of non-VIPs

also with three times more PPIs from the whole pool of non-VIPs? And importantly, can we do this for

not just one factor, but for multiple confounding factors simultaneously? We can build control sets as

already described in Castellano et al. (Castellano, 2019) and Enard & Petrov (Enard and Petrov, 2020).

The idea is to progressively add control genes to a growing control set until it has the same size as the

gene set of interest, while checking that the growing control set matches the set of interest for the desired

confounding factors (Fig. 2). This is however much easier said than done.
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Figure 2. Building a control set with matching confounding factors

In practice, a candidate control gene is picked up randomly from all potential control genes (Fig. 2). The

candidate control gene is then added to the control set if the confounding factors in the growing control

set still match the set of interest (Fig. 2). To decide whether the growing control set matches the set of

interest, different matching criteria can be used. For example, we can just check that the average values of

confounding factors in the growing control set are close enough to their average value in the set of
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interest, within a margin of error. For example, close enough may be defined as an average for the

growing control set that falls within an interval between 95% and 105% (plus or minus 5%) of the

average for the set of interest. Or, to match not only averages but more precisely the whole distributions

of each confounding factor, we can check that multiple quantiles of the distribution stay close to the same

quantiles in the set of interest. In this matching process, any newly added gene to the control set that

pushes it outside of the defined “close enough” range is discarded, and a new candidate control gene can

be randomly sampled until one matches (Fig. 2). The process can be iterated until the control set has

reached the size of the tested set of interest. In the sampling process, a potential control gene may be

resampled multiple times and included in the control set, thus making it a bootstrap. Using the same

control gene multiple times is required if the number of control genes is limited, and if using control

genes only one time is insufficient to reach the size of the tested set. Note that using the same control

genes multiple times in a bootstrap test can make the latter non-nominal, i.e. either too liberal or too

conservative due to a small gene sample size from which to pick up controls. However, we show in the

next part how using block-randomized genomes solve this issue by enabling the recalculation of nominal

p-values that represent true false positive risks. Resampling the same control genes in a bootstrap process

is necessary when the number of available control genes is limited. A scarcity of control genes can

happen for multiple reasons, including (i) the necessity of sampling control genes far enough from the

genes in the set of interest, (ii) testing a gene set of interest with one or multiple confounding factors with

values that differ greatly from other genes, and (iii) attempting to match a large number of confounding

factors.

Because sweeps can extend over multiple genes, it is crucial to sample control genes that are far enough

from the genes of interest, in order to avoid too many control genes overlapping with the same sweeps as

the genes of interest, and thus decreasing the power of the GSEA. Far enough here ideally means further

than the size of the largest sweeps. However, excluding nearby genes will especially limit the pool of

available control genes when testing a large set of interest, because then there are fewer places left in the

genome that are far from genes in this set. For example, there are 5,291 known VIPs in the human

genome, and 14,967 non-VIPs. However, of these 14,967 non-VIPs, only 8,329 are more than 100kb

away from the nearest VIP, and only 2,424 are more than 500kb away, which is closer to the size of large

sweeps in the human genome (Enard and Petrov, 2020; Voight et al., 2006; Williamson et al., 2007).

There are therefore half the number of appropriate non-VIP controls as there are VIPs, which clearly

illustrates the need for a bootstrap with repeated sampling of the same control genes. Note that to our

knowledge, the proximity of control genes to the genes in the set of interest has almost never been taken
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into account in past GSEA of selective sweep genome scans, which might have limited their statistical

power to find sweep enrichments in biological functions represented by many genes.

Another difficulty when building control sets is that the values of confounding factors in the gene set of

interest may be very different from the values in the set of potential control genes. This is expected to

make the matching of confounding factors more difficult, because only a subset of potential control genes

will actually preserve the matching of confounding factors when progressively building the matched

control sets. In the same vein, only a limited subset of potential controls will actually preserve the

matching of confounding factors when attempting to match a large number of confounding factors.

The scarcity of appropriate, matching control genes can make the building of control sets difficult, and

this is especially true at the starting phase when there are no or only a few newly added genes in the

growing control set. This is because the first potential control genes cannot be added to the growing

control set unless they match closely the tolerance ranges of all the confounding factors. In practice, very

few genes may fulfill these requirements, especially when there are many confounding factors included in

the matching. In order to successfully run the bootstrap while avoiding using always the same control

genes that individually closely match the tolerated range, we start the building of control sets by using a

“fake” starting group of control genes (Fig. 2). Each individual gene in the fake starting group matches

the average of all the confounding factors in the genes of interest perfectly. This group then acts as a

buffer, making it less likely that any newly added, real candidate control gene will push the growing

control set out of the tolerated range (due to the small weight of one gene in the average calculated

including the “fake” group; Fig. 2). Each time a new actual control gene is added, a fake control gene can

be removed until the fake control group is completely removed (Fig. 2), at which point the actual control

set has grown sufficiently to buffer on its own the confounding factor deviations of newly added genes.

The size of the initial fake group can be adjusted, but in practice we have found that groups of 50 fake

starting genes work well to jump-start the building of control sets. Importantly, this procedure increases

the range of genes that can be used as controls, by allowing more genes with diverse combinations of

confounding factors to be added to the growing control set without falling outside of the tolerated range.

In summary, there are many confounding factors that can affect a GSEA of recent selection scans that

have rarely been considered. The bootstrap approach we just described to take these factors into account

is implemented in a pipeline available at

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline.

Applying the bootstrap test to compare VIPs and non-VIPs.
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Here we further illustrate the usefulness of the bootstrap test to match confounding factors when

comparing VIPs and non-VIPs. Altogether, there currently are 5,291 human VIPs known to interact with

different viruses that infect humans (Table S1). We previously showed using a slightly smaller set of VIPs

that they are substantially enriched for large selective sweeps compared to non-VIPs (Enard and Petrov,

2020). This reference also provides more details on how VIPs are identified. Comparing VIPs and

non-VIPs is interesting for our purpose, because the large number of VIPs and the differences in potential

confounding factors between VIPs and non-VIPs make it challenging to run the bootstrap test. It is

therefore a good example of what to do in a rather extreme case. Running the bootstrap test is difficult,

first because the large number of VIPs means that there are not that many potential control non-VIPs far

enough from VIPs. To run the bootstrap test we decided to use control non-VIPs more than 500kb from

VIPs, because large sweeps in the human genome can extend this far or even further. This leaves us with

2,424 potential control non-VIPs. Second, running the bootstrap test is difficult in that case because there

is a significant number of potential confounding factors to match between VIPs and control non-VIPs.

This is expected to further limit the number of non-VIPs that can be used to build the control sets. Table 1

lists 13 potential confounding factors considered, all of which are significantly different between VIPs

and non-VIPs and might affect the occurrence of sweeps (two-sided Wilcoxon test P<0.05).

factor Wilcoxon test p-value
GTEx v8 average expression <10^-16

GTEX v8 lymphocyte expression <10^-16
GTEX v8 testis expression <10^-16

# of gene neighbors 0.02863
deCode recombination 0.001058

GC content 4.41E-15
CDS density 3.03E-07

PhastCons conserved density <10E-16
DNase I density <10E-16

gene length 2.02E-09
# of protein-protein interactions <10E-16

# of bacteria-interacting proteins <10E-16
# of immune genes <10E-16

Table 1. List of potential confounding factors when comparing VIPs and non-VIPs
Expression data is from GTEx release 8 (Consortium, 2013). Because we look specifically for large
sweeps, we measured the following factors in 500kb genomic windows: # of gene neighbors, deCode
2019 recombination map (Halldorsson et al., 2019), GC content, CDS density, PhastCons conserved
elements density,and DNAse I density. DNAse I density provides a measure of regulatory sequence
density. The number of bacteria-interacting proteins is from the Intact database (Orchard et al., 2014).
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Running the bootstrap test trying to match all these 13 confounding factors fails, due to an insufficient

number of adequate control non-VIPs (the bootstrap fails after a number of unsuccessful sampling of

control genes to add to the control set; see

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline). There is however no need to

match all the factors, because some, even if they differ between VIPs and non-VIPs, may either (i) not

affect the sweep enrichment at all, or (ii) affect it in the conservative direction; that is, not matching these

specific factors results in a smaller and thus conservative estimate of the enrichment. To identify which

factors need to be taken into account, we need to first estimate separately the impact of each factor on the

sweep enrichment at VIPs.

To estimate sweep enrichments, we use the iHS summary statistic measured on the 1,000 Genomes

Project phase 3 genomes (Genomes Project et al., 2015). We define a one Mb window centered at the

genomic center of each Ensembl protein-coding gene in the human genome, and measure the average iHS

value across SNPs in this entire window. We use large windows because we previously specifically found

an enrichment in strong, large sweeps at VIPs (Enard and Petrov, 2020). We then rank protein-coding

genes according to their corresponding average iHS value in a specific human population. For more

details, please refer to (Enard and Petrov, 2020). Importantly, we then do not use just one set of outlier

iHS sweeps, and instead explore the enrichment in iHS sweeps across all the 26 1,000 Genomes Project

populations at VIPs using a whole range of top ranks, from the top 2,000 iHS sweep candidates, to the top

10 iHS sweep candidates (Fig. 3A,B and C). Indeed, as already explained in the introduction, there is no

valid reason to limit GSEA to an arbitrary set of outliers defined using the outlier approach, because false

positive sweeps happen at random in the genome. Thus, instead of estimating the sweep enrichment for

one arbitrarily defined set of outlier candidates, we estimate a more agnostic enrichment curve that better

captures the effect of a whole range of possible sweep signals, from weaker, or older fading sweeps (top

2,000), to stronger, very recent sweeps (top 10). If there is no sweep enrichment, the enrichment curve is

expected to be flat.

Using this enrichment curve, we find that seven of the 13 factors have either a negligible impact on the

VIP sweep enrichment (the enrichment curve stays largely the same), or impact the estimated sweep

enrichment in the conservative direction, i.e, not matching these factors between VIPs and the control

non-VIPs results in smaller enrichment estimates.
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Figure 3. Enrichment of iHS sweeps at VIPs compared to non-VIPs
Fold enrichment (y-axis) is the number of VIPs in candidate sweeps divided by the average number of
control-non-VIPs in candidate sweeps. VIPs and non-VIPs in candidate sweeps are counted if they belong
to top x iHS genes (x-axis), where x is a rank threshold that slides from top 2,000 to top 10, taking in total
27 values (2,000; 1,500; 1,000; 900; 800; 700; 600; 500; 450; 400; 350; 300; 250; 200;150; 100 ;90 ; 80
;70 ;60 ;50 ;40 ;30 ;25 ;20; 15; 10). A fold enrichment of y=k at top x=50 means that there are k times
more VIPs in the top 50 iHS genes than control non-VIPs on average (10, 000 control sets of non-VIPs).
The black line shows observed fold enrichment at VIPs. The grey area shows the 95% confidence interval
of the fold enrichment. Fold enrichments that exceed ten are represented at ten. In this case, the
confidence interval is not represented. However, the lowest edge of the confidence intervals not
represented are all above one. The highest or lowest edge can be infinite when none of non-VIPs are in
candidate sweeps. When this happens, the infinite edge is not shown. Orange dots means bootstrap test
P<0.05 and red dots indicate bootstrap test P<0.001. Dashed line indicates fold enrichment of one, that is,
no enrichment. (A) Enrichment curve when the minimum distance between VIPs and non-VIPs is 500kb
and matching confounding factors. (B) Enrichment curve when the minimum distance between VIPs and
non-VIPs is 500kb and confounding factors are not matched. (C) Enrichment curve when minimum
distance is 100kb  and confounding factors are matched.

Figure 4. Confounding factors before and after matching
The five factors that need to be controlled for are GTEx expression in
lymphocytes, recombination, the number of protein-protein interactions
(PPI), the number of bacteria-interacting proteins, and the number of
immune genes. The whiskers are the default R boxplot whiskers, and
were estimated using 1,000 random sets of non-VIPs the same size as
the set of VIPs (5,291). For each random non-VIP set, we measured the
ratio of the average of a confounding factor in VIPs, over the average of
the confounding factor in the random set of non-VIPs. The circles
represent the same ratio, but for 1,000 non-VIP control sets generated
by the bootstrap test. All the ratios are close to one, as expected if the
bootstrap test matches the factors between VIPs and the control
non-VIPs, and can thus be represented by just one point (gray circles).
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Matching the five remaining factors (Fig. 4), the bootstrap test no longer fails, and finds a highly

significant iHS sweep enrichment at VIPs when counting iHS candidate sweeps across all the 26

populations included in the 1,000 Genomes Project (Fig. 3A; see (Enard and Petrov, 2020) for more

details). Although substantial, the enrichment found when matching confounding factors is not as strong

as when not matching confounding factors (Fig. 3B), thus showing the importance of taking confounders

into account to avoid spurious conclusions. We further show in figure 3C the enrichment when using

control non-VIPs at least 100kb away from VIPs, instead of 500kb as in figure 3A. The enrichment is

clearly much lower, which confirms that selecting controls far enough form the set of interest is critical.

Note that we already previously found that the sweep enrichment at VIPs is not due to a confounding

effect of the host biological functions enriched in VIPs, such as the cell cycle or DNA repair (Enard and

Petrov, 2020). As described below, we can now estimate an unbiased false positive risk for the whole top

2,000 to top 10 enrichment curve shown in figure 3A, by using block-randomized genomes (see below).

Using block-randomized genomes indeed enables the estimation of unbiased false positive risks (the other

name for False Discovery Rate estimates but used not in the context of multiple testing) that fully account

for the small sample size of the non-VIP controls that we used, and likely make the bootstrap test

non-nominal.

Estimating false positive risks and accounting for clustering and the non-independence of biological

functions all at once with block-randomized genomes.

Although the bootstrap test allows to control for multiple GSEA confounding factors simultaneously, it

suffers from two main limitations that require additional steps in order to verify a sweep enrichment.

First, the matching process can result in a limited number of control genes that can make the bootstrap test

too liberal or too conservative, as already explained. Second, the sampling of control genes during the

bootstrap test does not take clustering into account, since control genes are not selected to reproduce the

clustering observed for the genes in the set of interest. In an extreme hypothetical case, we can imagine

that all the genes in the set of interest are clustered together in one single locus, while the sampled control

genes are not clustered but instead scattered between distant genome locations. Such a configuration

could result in an overly liberal bootstrap test, if just one sweep happens to overlap the whole cluster of

genes of interest.

Fortunately, randomized genomes represent a simple solution to all of these issues. More specifically,

block-randomized genomes solve both the non-nominal nature and the clustering issues of the bootstrap

test. Block-randomized genomes are genomes where the order of genes has been shuffled randomly.

However, instead of simply shuffling genes individually, large blocks of contiguous genes are shuffled,
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with the actual order of genes being preserved within each block (Fig. 5). For example, human genes in

the human genome can be split into 100 blocks (each with the same number of genes) based on their order

on chromosomes, and these 100 blocks can then be randomly shuffled. Because the number of genes in

each block is much larger than the expected number of genes even in the largest sweeps, the

block-randomized genomes largely preserve the original clustering structure of genes in sweeps observed

in the real genome. By using a large number of block randomized genomes, it is then possible to get a null

distribution of the expected sweep enrichment given the same clustering structure, by counting the new

numbers of genes in sweeps at the original locations of both the genes in the set of interest and the control

genes (Fig. 6). The number of genes in the set of interest and the number of control genes are exactly the

same as in the real genome, and thus the null expected enrichment distribution fully takes into account the

effect of the size of the control set of genes on the variance of the enrichment observed with the bootstrap

test. Contrary to the bootstrap test p-values alone, the block randomized genomes therefore allow to

estimate an actual, unbiased false positive risk that takes both clustering and the size of the bootstrap test

control sets into account.

Figure 5. Random shuffling of genomic blocks
Legend as in figure 1. Genes are represented as vertical lines, and colored as in figure 1 according to the
strength of the iHS signal. Genes are initially ordered (x-axis) as they are in the genome.

Importantly, the false positive risks estimated by the block-randomized genomes to unbias the bootstrap

test are completely equivalent to False Discovery Rates (Colquhoun, 2014), which is the name that they

are given in the specific context of multiple testing. Because they preserve the clustering and

interdependency of gene attributes, block randomized genomes can thus be used to estimate false

discovery rates when testing a large number of gene sets of interest, for example when running GSEA for

a large number of Gene Ontology annotations. In this specific example, block-randomized genomes

preserve the parent/daughter structure of the Gene Ontology, which is for instance not taken into account

by the frequently used Fisher’s Exact test.
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Because block randomized genomes provide unbiased false positive risks, using the classic outlier

approach to designate sweep candidates does not make much sense. Indeed, the false positive risk can be

assessed for any rule to decide which genes are candidate sweeps, and which are not. We could for

example decide to run a GSEA using the top 2,000, or top 1,000, or top 100 gene candidates, with no

unjustified preconception about the expected number or strength of sweeps, and no preconception about

whether or not they should fall outside of an often questionably defined neutral distribution. One can even

use more complex statistics to estimate the false positive risk, such as the sum of enrichments measured

over many sweep rank thresholds (for example, top 2,000 to top 100 with increments of 100), in order to

detect a range of situations going from an enrichment in many weak or older sweep signals (top 2,000) to

an enrichment in a few strong and recent sweeps signals (top 10).

In summary, block randomized genomes account for clustering, biases of the bootstrap test, and eliminate

the need to rely on the outlier approach in the context of GSEA. Using block-randomized genomes to

estimate false positive risks can however be computationally costly, as they require running the entire

GSEA pipeline again and again. A pipeline to run both the bootstrap test and false positive risk

estimations with block randomized genomes is available at

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline.

Applying block randomized genomes to VIPs and non-VIPs

As shown in figure 3A, the bootstrap test detects a strong sweep enrichment at VIPs compared to control

non-VIPs. The small pool of control VIPs compared to the number of VIPs however likely makes the

bootstrap test non-nominal, meaning that the p-values reported by the bootstrap test (Fig. 3A) likely do

not represent the real false positive risk (being either lower of higher, depending on the direction of the

noise due to the small size of the controls sample). The bootstrap test also does not take clustering into

account. To solve all these issues, we estimate an actual false positive risk for the enrichment curve

presented in figure 3A by using block randomized genomes. The enrichment curve represents the relative

enrichment at different top iHS sweep thresholds from top 2,000 to top 10. The relative enrichment is the

ratio of the observed number of VIPs in sweep candidates (given a specific threshold), divided by the

average expected number according to the matched controls from the bootstrap test. To measure the false

positive risk, we use a slightly different metric, the sum of the difference (instead of the ratio) between the

observed and the expected numbers of VIPs in candidate sweeps across all the top iHS thresholds. We use

the difference between observed and expected instead of the ratio, because there is a distinction between a

ratio of two reflecting two VIPs in sweeps instead of one, and a ratio reflecting 200 VIPs in sweeps

instead of 100. The ratio is just easier for visualization. We compute the false positive risk by comparing

39

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline


this sum with the same sum calculated 5,000 times for 5,000 block randomized genomes. The estimated

false positive risk for the VIP sweep enrichment curve is 0.0002, thus confirming a strong excess of

sweeps at VIPs not due to the restricted number of non-VIP controls, nor due to the clustering of genes in

the same sweeps.

Figure 6. Estimation of the false positive risk.
Red vertical line: real sum of the difference between the number of sweeps at VIPs and control non-VIPs.
The distribution shows the same sum but for 5,000 block-randomized genomes. Black vertical line:
average over the 5,000 block-randomized genomes.

Discussion

Here, we described the many potential problems with naïve GSEA of positive selection, and we provide a

number of potential solutions. In the future, more and more robust GSEA pipelines will hopefully be

developed to gain better and better functional genomics insights based on sweep signals.

Since population geneticists started running GSEA of selection scans, GSEA have often been derided as

that “one analysis you did and put at the end of a paper, just because you could and it was easy enough to

run”. This negative view of GSEA stems both from (i) the issues with the quality of early biological

functional gene annotations that have since been greatly improved, and (ii) from a serious risk of

excessive story-telling. It is noteworthy that the randomized genomes-based false positive risk analysis

that we describe makes GSEA robust against story-telling, because unbiased false positive risks evaluate

whether a biological function is enriched for selection just by chance out of thousands of biological

functions tested (there always are outliers even in the absence of selection), or genuinely enriched for
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selection. The legitimate concerns around GSEA may have however devalued it enough that they took the

focus away from improving GSEA in the context of population genetics.

These concerns must however not distract from the great potential of GSEA to help population geneticists

better understand genomic evolution. For instance, it has become clear that the inference of demographic

processes is biased by selection, and that the inference of selection in return is biased by demographic

processes (Schrider et al., 2016). These confounding effects of different evolutionary processes have

fueled a lengthy and sometimes frustrating debate on the role of natural selection versus neutral processes

in molecular evolution. It can be argued that population geneticists have been “running in circles” fighting

over arguments strictly rooted in population genetics, at a time when GSEA can provide critical answers.

Indeed, a good example of GSEA helping the debate is the finding by Schrider & Kern that sweep

candidate loci in the human genome are very strongly enriched in VIPs (Schrider and Kern, 2017).

Finding sweeps where there is strong prior biological knowledge to expect them is very strong evidence

of their reality and importance in the human genome. Whether or not Schrider and Kern’s approach to

detect sweeps is, for example, sensitive to demography or not then no longer really matters that much.

Indeed, they may detect false positive sweeps, but not so many that there are not enough real sweeps

among their candidates that a biologically meaningful enrichment cannot be identified. Note that although

Schrider & Kern did not control for confounding factors, we have confirmed their result here and

previously (Enard and Petrov, 2020). Such strong transversal biological evidence should be decisive in the

selection versus neutrality debate (Kern and Hahn, 2018), but has far too often been ignored. Our hope is

to have shown that GSEA has great potential, is far from being trivial, and worth more efforts for

improvement at a time when ecological genomics are about to explode.
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Appendix B -- Decreased recent adaptation at human Mendelian disease genes

as a possible consequence of interference between advantageous and

deleterious variants
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Abstract

Pathogens were a major driver of genetic adaptation during human evolution. Viruses in particular were a

dominant driver of adaptation in the thousands of proteins that physically interact with viruses (VIPs for

Virus-Interacting Proteins). This however poses a conundrum. The best understood cases of virus-driven

adaptation in specialized immune antiviral factors or in host viral receptors are numerically vastly

insufficient to explain abundant adaptations in VIPs. What adaptive mechanisms can then at least partly

close this gap? VIPs tend to be broadly conserved proteins with conserved host native molecular

functions. Because many amino acid changes in a protein can alter its stability –the balance between the

folded and unfolded forms of a protein-- without destroying conserved native activities, here we ask if

stability evolution was an important mechanism of virus-driven human protein adaptation. Using

predictions of protein stability changes based on Alphafold 2 structures and validated by multiple lines of

evidence, we find that amino acid changes that altered stability experienced highly elevated adaptative

evolution in VIPs, compared to changes with a weaker impact on stability. We further find that RNA

viruses, rather DNA viruses, predominantly drove strong adaptation through stability changes in VIPs.

We also observe that stability in immune antiviral VIPs preferentially evolved under directional selection.

Conversely, stability in proviral VIPs needed by viruses evolved under compensatory evolution following

viral epidemics. Together, these results suggest that stability evolution, and thus functional host protein

abundance evolution, was a prominent mechanism of host protein adaptation during viral epidemics.

Introduction

Virus-driven adaptation includes some of the most compelling and best understood examples of protein

adaptation on a mechanistic level in human and other mammals. Host proteins with well understood

adaptation in response to viruses notably include prominent immune antiviral proteins such as TRIM5

(Sawyer et al., 2005), PKR (Elde et al., 2009) and APOBEC3G (Compton et al., 2012; Sawyer et al.,

2004; Yang et al., 2020)  that directly attack viral molecules and trigger downstream molecular processes
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meant to destroy them. Other well understood cases include adaptive amino acid changes at the host-virus

contact interface that decrease the binding affinity of viruses for their host cell surface receptors. The

filovirus receptor NPC1 in bats is such an example, with one specific amino acid position in the contact

interface explaining most of bat species-specific susceptibility (Ng et al., 2015). Interestingly however,

viral receptors can also harbor many positively selected amino acid changes well outside of the contact

interface with no identified mechanism to date to explain their adaptive nature (Enard et al., 2016;

Uricchio et al., 2019). This is the case of ANPEP, a coronavirus receptor, where many selected sites well

outside of the contact interface make it one of the most positively selected proteins in mammals (Enard et

al., 2016).

More generally, recent evidence shows that, far from being restricted to specialized immune antiviral

factors or viral receptors, adaptation has been abundant among thousands of currently known VIPs,

including proviral ones, with a more than two-fold increase in adaptation compared to proteins that do no

interact with viruses (noted non-VIPs) (Enard et al., 2016; Uricchio et al., 2019). VIPs in particular

experienced highly increased rates of strong adaptation, where the viral selective pressure was likely

intense and led to rapid fixation of the advantageous amino acid changes (Enard and Petrov, 2020;

Uricchio et al., 2019). In VIPs, the surface contact interfaces with viruses only represent a very small

proportion of all the amino acids, typically a few percent (Wierbowski et al., 2021). For example, the

contact interface of ACE2 with SARS-CoV-2 represents only 21 amino acids, or 2.6% of ACE2 (Yan et

al., 2020).

What protein evolution mechanisms then may explain widespread positive selection in VIPs not restricted

to contact interfaces? What protein attributes changed that provided a selective advantage in response to

viruses, while preserving the host native functions of VIPs? We can sort protein mutations into four

non-exclusive categories that may be selected during viral epidemics: (i) mutations that affect protein

conformation, (ii) mutations that alter the host-virus contact interface, (iii) mutations that change the host

native molecular functions, and (iv) mutations that change the stability, i.e the abundance of the folded,

functional form of VIPs (Dasmeh et al., 2013). Even though we do not exclude that any of these different

mechanisms occurred in VIPs, it is important to consider that VIPs tend to be broadly conserved across

mammals and beyond (Castellano, 2019). This is true irrespective of whether VIPs were discovered

through low-throughput hypothesis-driven virology studies (75% with orthologs across mammals;

Methods), or through high throughput mass-spectrometry assays that are blind to previous knowledge

(74% with orthologs) (Batra et al., 2018; Jager et al., 2011; Shah et al., 2018; Watanabe et al., 2014). This

excludes any difference in research attention and corresponding publications artificially biasing VIPs
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towards more conserved genes. This greater conservation might make repeated protein conformation

changes less likely, because recurrent, notable conformational changes may be incompatible with the

broad conservation of VIPs and their host native molecular functions (Konate et al., 2019; Lee et al.,

2007; Radivojac et al., 2013). The latter might also limit adaptation through amino acid changes that

modify the host native molecular activities of VIPs. Mutations at catalytic residues are very likely to

disrupt these activities (Firnberg et al., 2014). In addition, similarly to contact interfaces, catalytic

residues responsible for these activities only represent a small percentage of a protein (less than 5%),

mainly restricted to protein surfaces (Nelson et al., 2013).

Conversely, protein stability changes may represent a good candidate mechanism for virus-driven

adaptation. Protein stability can be defined as the thermodynamic balance between the folded functional

form of a protein, and the unfolded, non-functional form that is typically targeted for degradation

(Clausen et al., 2019). Protein stability changes are quantified as ∆∆G, defined as the change in the

thermodynamic quantity ∆G, the Gibbs free energy (in kcal/mol) that determines the stability of a protein.

Amino acid changes with positive ∆∆G are destabilizing, negative ones are stabilizing. A change of ∆∆G

of one kcal/mol roughly corresponds to a fivefold change in folded protein abundance at body

temperature (Dasmeh et al., 2013; Serohijos et al., 2013). Protein stability is a major determinant of the

abundance of the functional form of a protein in cells, and many known disease-causing variants

destabilize and decrease the abundance of essential proteins (Nielsen et al., 2017; Scheller et al., 2019;

Stein et al., 2019). We can then imagine how VIP stability changes may be advantageous during a viral

epidemic. For example, lower stability and thus lower abundance of a proviral factor required by a virus

to replicate may be advantageous for the host.

Experimental data, notably from the disease variants literature (Stein et al., 2019) and from protein design

studies (Goldenzweig and Fleishman, 2018), shows that many amino acid changes in many parts of a

protein can change stability (Li et al., 2020; Serohijos and Shakhnovich, 2014). The large number of

possible stability-altering amino acid changes may thus in theory match the large number of adaptive

amino acid changes observed in VIPs. Furthermore, stability evolution may be easier in otherwise

conserved proteins (Dasmeh et al., 2013), including VIPs; a large pool of possible stability-altering amino

acid changes might (i) happen outside of evolutionarily conserved active sites of VIPs responsible for

conserved host native functions, and (ii) a large pool might make compensatory evolution easier in the

case where a host native function is no longer optimal after a change in folded protein abundance (see

below, Compensatory stability evolution in proviral VIPs). Finally, stability changes are particularly likely
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for amino-acid changes that occur in the buried parts of protein structures, and below we observe that

many adaptive amino acid changes in VIPs occurred within the buried part of VIPs (Results below).

Here, we focus on protein stability changes as a possible mechanism of adaptation in response to viral

epidemics. We find that amino acid substitutions in human evolution that altered protein stability

substantially were much more likely to be adaptive in VIPs, compared to amino acid changes that

changed stability to a lesser extent. We further find that VIPs have experienced more adaptation in the

buried than in the outer parts of their protein structure. This is in agreement with the fact that changes of

buried residues are more likely to affect protein stability, and we confirm indeed that the elevated

adaptation in the buried part of VIPs is driven by those amino acid changes that modify protein stability.

We further observe that antiviral and proviral VIPs have experienced stability-driven adaptation, but in

different ways. Immune antiviral VIPs whose main function is to impede viruses have overall experienced

directional stability evolution, likely as a result of changing optima depending on shifting pathogen

pressures over evolutionary time. Conversely, most proviral VIPs do not have immune functions but have

many broadly conserved non-immune host native functions under stabilizing selection. As expected,

likely due to these conserved native functions, non-immune proviral VIPs experienced predominantly

compensatory stability evolution. Together, our result suggest that protein stability evolution may have

been an important mechanism of host adaptation in response to viruses. Our results further suggest a

model where further compensatory evolution may occur after viral epidemics, to bring proviral VIPs back

to their initial, and perhaps more optimal stability in the absence of viral selective pressure.

Results

To test if protein stability was a determinant of adaptation in VIPs, we use a recent version of the

McDonald-Kreitman test (McDonald and Kreitman, 1991) called ABC-MK (Uricchio et al., 2019) to

estimate the proportion of amino acid substitutions that were adaptive among those that significantly

altered stability, compared to those that did not during human evolution since divergence with

chimpanzees. McDonald-Kreitman approaches estimate the percentage of nonsynonymous substitutions

that were adaptive by contrasting the total observed number of nonsynonymous substitutions with what

this number would be under neutrality, if adaptation had not occurred. This neutral expectation can be

derived from the Site-Frequency-Spectrum of present non-synonymous variants, while at the same time

controlling for past fluctuations of the mutation rate by contrasting nonsynonymous and synonymous

substitutions and variants from the same coding sequences (Uricchio et al., 2019). We use ABC-MK with

coding sequence substitutions that occurred specifically in the human branch since divergence with
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chimpanzees (Methods), and variants from the 1,000 Genome projects groups located in Africa (Genomes

Project et al., 2015), as described in (Uricchio et al., 2019). Notably, ABC-MK has the ability to

distinguish between weak and strong adaptation (Uricchio et al., 2019) (Methods), and here we use this

functionality as it was previously shown that viruses drive particularly strong adaptation (Enard and

Petrov, 2020; Uricchio et al., 2019).

We estimate stability changes caused by amino acid substitutions and variants (Figure 1A,B) with the

computational method Thermonet (Li et al., 2020) used on high confidence Alphafold 2 protein structures

(Jumper et al., 2021) (available at https://alphafold.ebi.ac.uk/; Methods). Thermonet uses a deep

convolutional network trained on experimental stability data to predict the stability changes caused by

amino acid substitutions or variants within a given protein structure. Experimental measures of stability

changes are not currently available beyond a limited number of human proteins (Pancotti et al., 2022).

Although Thermonet provides computational estimates, it was recently shown to have good, balanced

performance when benchmarked with new experimental stability data that was not used for its

convolutional network training (Pancotti et al., 2022). We further validate Thermonet estimates in

multiple ways. First, Thermonet correctly identifies a known destabilizing genetic variant (R105G) in

antiviral VIP APOBEC3H as strongly destabilizing (stability change ∆∆G = 0.71 kcal/mol) (Chesarino

and Emerman, 2020). Second and most importantly, we find strong, highly significant evidence of

compensatory evolution of protein stability in non-immune proviral VIPs with multiple amino acid

changes, where it is the most expected (see below). It would not be possible to observe such

compensatory evolution if Thermonet estimates were not sufficiently correlated with the actual stability

changes that occurred during human protein evolution.
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Figure 1. Distributions of stability changes and adaptation in VIPs and control non-VIPs.
A) Distribution of Thermonet estimated ∆∆G values for human nonsynonymous variants (Methods). The
dashed lines represent the ∆∆G=-0.225 and ∆∆G=0.225 limits. B) Distribution of Thermonet estimated
∆∆G values for human nonsynonymous fixed substitutions (Methods). C) α-curves used by ABC-MK to
estimate the proportion α of adaptive nonsynonymous substitutions (y-axis; Methods) using only variants
and substitutions from high confidence Alphafold 2 residues (pLDDT≥70) with stability predictions (for
the nonsynonymous ones; Methods) in VIPs (continuous curve) and control non-VIPs (dashed line for the
average and grey area for the 95% confidence interval). D) Same as C) but using all variants and
substitutions known at VIPs and control non-VIPs, not just the ones restricted at high confidence
Alphafold 2 residues.

Out of ~5,500 VIPs known to date (Table S1), 2,900 have high confidence Alphafold 2 structures and can

be compared with 5,700 non-VIPs also with high confidence structures (Table S1; Methods). These

include only VIPs and non-VIPs with orthologs across mammals (Methods) since we previously showed

that viruses increase adaptation more specifically in VIPs that are conserved across mammals and beyond

(Castellano, 2019). This also limits the risk of confounding due to gene age (Moutinho et al., 2022). We

compare VIPs with non-VIPs to highlight the evolutionary patterns that are specific to VIPs (Figure

1C,D).

Here, we specifically ask if stability-altering substitutions have (i) experienced more positive selection in

VIPs than in non-VIPs, and (ii) more positive selection than substitutions that altered stability to a lesser

extent. We do not compare VIPs with any non-VIPs, but match VIPs with control non-VIPs that look like

VIPs in ways other than interacting with viruses, that could affect adaptation and confound the

comparison (Methods). The matching is done with a previously described bootstrap procedure (Di et al.,

2021; Enard and Petrov, 2020) and includes many potential confounders (Methods). We then estimate

how significant increased adaptation is in VIPs by repeating the measurements of adaptation in sets of the

same size as the VIPs set, but made of randomly sampled VIPs and non-VIPs. This effectively estimates

an unbiased false discovery rate by generating null distributions of estimates of adaptation expected if

there was no impact of interactions with viruses (FDR; Methods).
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Considering only substitutions and variants with predicted stability changes (Methods), the 2,900 VIPs

with good Alphafold 2 structures have experienced 3.6 times more adaptation than control non-VIPs, with

27.5% of all amino acid substitutions estimated to be adaptive vs. only 7.4% for control non-VIPs (Figure

1C; the proportion of adaptive substitutions is noted α). This includes 19% of strongly selected

substitutions in VIPs, compared to only 3% in control non-VIPs. Considering all substitutions and

variants including those with no stability change prediction (Methods), the 2,900 VIPs have experienced

3.5 times more adaptation than control non-VIPs, with 35% of all amino acid substitutions estimated to be

adaptive vs. only 10% for control non-VIPs (Figure 1D). This includes 29% of strongly selected

substitutions in VIPs compared to only 4% in control non-VIPs.

Abundant stability-changing, adaptive substitutions in VIPs

In order to study the impact of protein stability on adaptation, we split nonsynonymous variants and fixed

substitutions in the human branch according to stability changes (given by their |∆∆G| absolute value in

kcal/mol) into two groups: those below the variants’ absolute stability change median (|∆∆G|<0.225), and

those above (|∆∆G|>0.225). This also happens to roughly correspond to a transition point in the

leptokurtic distribution of ∆∆G among variants or substitutions (Figure 1A,B), between a large

concentration of SNPs around ∆∆G=0 and more spread out, symmetric tails on both sides. We do not try

to distinguish between destabilizing (∆∆G>0) and stabilizing (∆∆G<0) variants that decrease or increase

protein stability, respectively, but instead we use the absolute |∆∆G|. Indeed, VIPs can be proviral or

antiviral, making it tempting to assign an expectation of what stability change direction should be

adaptive. One might expect that it is advantageous to increase the stability and therefore increase the

abundance of an antiviral VIP indefinitely. This may however have adverse effects, notably in the case of

antiviral VIPs related to inflammation (Yong et al., 2022). More importantly, we found through a large,

multi-year effort of manual curation of 4,477 virology publications that antiviral VIPs for a virus are very

frequently subverted and made proviral by the same or other viruses (Table S1, Methods), thus making it

difficult to assign a specific expected direction of adaptive ∆∆G. Retasking by viruses to accomplish

proviral steps was also recently noticed to occur even with very prominent antiviral factors (King and

Mehle, 2022; Tran et al., 2020). Finally, assigning an adaptive ∆∆G direction might also be made difficult

by the fact that there might be compensatory evolution of stability, especially in proviral VIPs that have

important, conserved non-immune functions in the host (immune antiviral VIPs are more specialized in

attacking viruses and likely less impeded by other native host functions, see below).

Thus, we estimate the rate of adaptive substitutions with ABC-MK for just two categories, all

substitutions with absolute stability changes below, and all substitutions above the variants’ absolute
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median for |∆∆G|, respectively (Figure 1A,B). We cut the data this way to compare two groups of equal

sizes, and thus similarly powered comparisons between VIPs and non-VIPs. We call the group above the

median the Large Stability Changes group (LSC), and the group below the Small Stability Changes group

(SSC). We only include variants and substitutions at amino acids with high Alphafold 2 structural

prediction confidence (Alphafold 2 accuracy score pLDDT≥70; Methods).

We find much higher rates of adaptation for the LSC group than for the SSC group. ABC-MK estimates

that 34% or 250 of the 737 LSC substitutions were advantageous in VIPs, versus only 15% or 125 of the

832 SSC substitutions (Figure 2A,B). Thus, a substantial majority (67% or 250/375) of advantageous

nonsynonymous substitutions with ∆∆G predictions in VIPs altered protein stability. The estimated 34%

of adaptive LSCs in VIPs is also much higher than the estimated 10% in sets built randomly sampling

both VIPs and control non-VIPs to estimate a false discovery rate (FDR=3*10-4; Methods). In contrast,

VIPs only have a marginally higher adaptive percentage of SSCs compared to random sets (15% vs. 7%

respectively, FDR=0.04).

By comparing adaptive proportions in VIPs and control non-VIPs, we can also estimate the amount of

adaptation that can be attributed to interactions with viruses. In control non-VIP sets, 8% LSC

substitutions were advantageous on average, more than four times less than in VIPs. A total of 34% minus

8% (26%), or 192 of the 737 LSC substitutions in VIPs, can thus be attributed to virus-driven adaptation.

SSC substitutions were also 8% advantageous in control non-VIPs, implying 58 (15%-8%) of the 832

SSC substitutions in VIPs can be attributed to viruses. Thus, 77% (192/(192+58)) of the adaptative

substitutions attributable to viruses in VIPs changed stability above the |∆∆G| median.

ABC-MK also has the ability to distinguish between strong and weak past protein adaptation (Methods).

We find that in VIPs, it is in particular the rate of strong adaptation that is increased among LSC

substitutions, with an estimated 27% of substitutions being strongly advantageous, vs. only 5% in random

sets and 3% in control non-VIPs (Figure 2A; FDR=4*10-4). In VIPs SSC substitutions are 9% strongly

advantageous compared to 4% in control non-VIPs. Using the same logic as above, this means that 177

LSC and 42 SSC substitutions can be attributed to strong, virus-driven adaptation, respectively, with 81%

of strong virus-driven adaptation then involving stability changes above the |∆∆G| median. This

corresponds to the expected evolutionary pattern if adaptative evolution with LSCs in VIPs was indeed

driven by viruses, since we previously showed that virus-driven adaptation was disproportionately strong

adaptation (Enard and Petrov, 2020; Uricchio et al., 2019).
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Figure 2. Stronger adaptation through large stability changes in VIPs.
We compared adaptation among LSC substitutions (A) with adaptation among SSC substitutions (B). The
α-curves used by ABC-MK to estimate α are as in Figure 1C. The red graph shows the total α in VIPs
(vertical line) vs. the expected null distribution when randomly sampling VIPs and control non-VIPs.
Green graph: same as red but only for strong adaptation as measured by ABC-MK. Blue graph: same as
red but only for weak adaptation as measured by ABC-MK.

Stability, rather than other protein attributes explains increased VIP adaptation at buried residues

We further assess potential confounding protein attributes that might be the primary selected attributes,

instead of stability. Specifically, the effect of a given residue on stability is known to depend strongly on

the position of the residue in the protein structure. More hydrophobic residues closer to the buried core of

proteins are known to contribute disproportionately to protein stability (Nick Pace et al., 2014). In

agreement with this, LSCs tend to be more buried, further from the structural surface of VIPs than SSCs.

Using Relative Solvent Accessibility (RSA) measured by DSSP (Kabsch and Sander, 1983) (Methods) as

a measure of how buried or exposed to the surface a given protein residue is, we observe that LSCs have

an overall median RSA of 0.23, vs. 0.4 for SSCs (see also Figure S1). This however raises the possibility

that buried residues in VIPs have elevated adaptation regardless of their impact on stability. VIPs might

experience more adaptation at buried residues because changes in protein conformation and/or changes in
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allostery, where functional signals are transmitted through protein structure (Nelson et al., 2013; Swain

and Gierasch, 2006), were the primary adaptive protein attributes. The increased rate of adaptation of

LSCs might then only be a secondary, bystander effect of the fact that substitutions in buried parts of

proteins tend to also affect protein stability to a greater extent. Accordingly, we find that VIPs

experienced more adaptive substitutions below than above the overall median RSA (RSA=0.32) in their

structures, with 39% below or 262 adaptive substitutions, vs. 19% above or 173 adaptive substitutions

estimated by ABC-MK, respectively (Figure 3A,B). The increased adaptation below the median RSA

strongly sets VIPs apart from control non-VIPs (random sets FDR=2*10-4; Figure 3B), and this is even

more the case for strong adaptation (Figure 3B). Notably, LSCs were less adaptive in high RSA (Figures

3C and S2) than in small RSA (Figures 3D and S2) parts of VIPs, which excludes that adaptive LSCs

overall can represent a bystander effect of adaptation at contact interfaces or molecular activities located

at the protein surface.

We further observe that the increased adaptation in the low RSA parts of VIPs is strongly dependent on

protein stability. While LSCs below their RSA median or the SSCs’ RSA median (0.23 and 0.4,

respectively) have strongly elevated adaptation compared to random sets (Figures 3D and S2), all SSCs in

VIPs below a 0.4 RSA only have 10% adaptive substitutions, a percentage that is not different from

random FDR sets (FDR=0.31) and lower than the 20% adaptive SSCs in high RSA parts of VIPs (Figure

3E,F). Together, these results suggest that protein stability changes are the primary driver of increased

adaptation, especially strong adaptation, in more buried, lower RSA parts of VIPs, rather than changes of

protein conformation and/or allostery. This further narrows down the possible mechanistic explanations to

protein stability, since more buried parts of VIPs are also less likely to include contact interfaces or active

catalytic pockets typically found at the surface of proteins.
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Figure 3. Adaptation as a function of position in the protein structure.
Legend same as Figure 2. A) adaptation (LSC+SSC) in more exposed parts of VIPs and control non-VIPs
with RSA≥0.32, the median for LSC and SSC combined. B) same as A) but for more buried parts with
RSA<0.32. C) LSC adaptation above the LSCs’ RSA median of 0.23. D) LSC adaptation below the
LSCs’ RSA median of 0.23. E) SSC adaptation above the SSCs’ RSA median of 0.4. F) SSC adaptation
below the SSCs’ RSA median of 0.4. All four subgroups represented in C, D, E and F have separating
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RSA medians such that the four subgroups have similar sizes (and thus variance and power to test
hypotheses).
Increased adaptation through large stability changes in more RNA than DNA viruses

Having found broad patterns across VIPs, we then estimate which viruses have a particularly increased

associated percentage of adaptive LSC substitutions. We previously found that RNA viruses whose

genomes are coded by RNA, rather than DNA viruses, have driven particularly strong and abundant

selection at their respective VIPs during human evolution (Enard and Petrov, 2018; 2020; Souilmi et al.,

2021). If abundant adaptive evolution of LSCs in VIPs is indeed a hallmark of virus-driven adaptation, we

should then be able to observe that this is particularly the case for VIPs of RNA viruses. In agreement

with this prediction, we find seven RNA viruses out of nine tested with significantly increased adaptive

LSCs in their specific VIPs (compared to random FDR sets, Table 1), compared to only one of the six

tested DNA viruses, Kaposi’s sarcoma Herpesvirus KSHV (Table 1). Five of the seven significant RNA

viruses have VIPs with very strongly elevated percentages of adaptive LSCs at or above 50%, including

coronaviruses (72%, Figure 4A,B), rhinovirus RV-B14 (84%, Figure 4C,D), Dengue Virus (58%, Figure

S3A), Human Immunodeficiency Virus HIV (54%, Figure S3B) and Influenza A Virus (50%, Figure

S3C).  In the VIPs of coronaviruses, dengue virus, Hepatitis C virus, HIV, rhinovirus RV-B14 and KSHV,

the difference in adaptation between LSCs and SSCs is extreme (Table 1 and Figures 4 and S3). All VIPs

that interact only with RNA viruses had a significant elevation of adaptive LSCs (40%, Table 1), while all

VIPs that interact only with DNA viruses did not (10%, Table 1). Together, these results show that RNA

viruses were the predominant drivers of strong adaptation through large stability changes in VIPs.

Table 1. LSC and SSC adaptation for the VIPs
and control non-VIPs of 15 different viruses. α
is the total alpha. αs: strong adaptation. αw: weak
adaptation. DN: number of nonsynonymous
substitutions (LSC left or SSC right) in the VIPs of
each virus. DN-α: corresponding estimated number
of adaptive nonsynonymous substitutions. Upper
rows: nine RNA viruses. Middle rows: six DNA
viruses. Lower rows: VIPs that interact only with
RNA viruses and VIPs that interact only with DNA
viruses. Light orange: random shuffling of VIPs
and control non-VIPs FDR<0.05. Dark orange:
FDR<0.001.
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Figure 4. Adaptation in large or small stability changes for the VIPs of two RNA viruses with high
LSC adaptation. Legend same as Figure 2. A) ABC-MK results for 448 coronavirus VIPs and control
non-VIPs for LSCs. B) Same but for SSCs. C) ABC-MK results for 164 rhinovirus RV-B14 VIPs for
LSCs. D) Same but for SSCs. The numbers of VIPs for each virus type correspond to the number of VIPs
with enough high confidence Alphafold 2 residues (Methods) and with orthologs across mammals
(Methods).
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Directional evolution in immune antiviral VIPs, and compensatory evolution of stability in

non-immune proviral VIPs

Because we use computational estimations from Thermonet, we seek to further validate these estimations

by testing predictions about the expected evolution of protein stability of different functional classes of

VIPs, that can only be verified if Thermonet’s estimations are of sufficient quality. Different VIPs have

very diverse native functions in the host (Enard and Petrov, 2018; 2020), but can still be sorted in a

number of categories depending on their functional effects on viruses. In particular, many VIPs can be

classified as immune antiviral VIPs that actively engage viral molecules to directly degrade, or target

them for degradation, or activate degradation pathways (Table S1). On the other end of the functional

spectrum, many VIPs do not have any immune function and are in fact proviral factors that assist viruses

when the latter hijack their molecular functions to complete multiple steps of their replication cycle (Table

S1). For example, viruses subvert host transcription regulators to activate the expression of their own viral

genes during infection (Chau et al., 2008; Scoggin et al., 2001; Shen et al., 2022). We predict that immune

antiviral and non-immune proviral VIPs should have experienced different patterns of protein stability

evolution. In addition to uncovering new evolutionary patterns of host adaptation to viruses, verifying

these predictions would also provide strong additional validation of the quality of the ∆∆G estimated by

Thermonet.

We predict that immune antiviral VIPs should have experienced predominantly directional stability

evolution, while non-immune proviral VIPs should have experienced predominantly compensatory

evolution of stability. Indeed, the main, often highly specialized function of immune antiviral VIPs is to

engage with viruses, with limited pleiotropic constraints in their way to often evolve very rapidly (Elde et

al., 2009; Sawyer et al., 2004; Sawyer et al., 2005). Their incessant arms race with viruses suggests that

stability as an adaptive protein attribute, might have then evolved under directional selection, with

stability optima changing over time together with the ever-changing landscape of pathogenic viruses.

Conversely, non-immune proviral VIPs have non-immune, conserved native functions in the host. Thus,

in any given non-immune proviral VIP with stability itself under stabilizing selection, adaptation during

viral epidemics might take away protein stability from its usual optimum to complete native host

functions, when there is no viral selective pressure to temporarily shift that optimum. This predicts that

compensatory evolution of protein stability should then occur in non-immune proviral VIPs after viral

epidemics, in the form of amino acid changes that tend to bring stability back closer to its pre-epidemic

level (Chaurasia and Dutheil, 2022). This prediction has the advantage that it can be tested in a

straightforward way, provided that Thermonet estimations are of sufficient quality. If compensatory

stability evolution occurred in a non-immune proviral VIP, then we expect that the sum of stability

86



changes caused by each amino acid change in this VIP should be closer to zero than expected by chance

(regardless of the chronological order of these changes, which is unknown). Stability changes in this VIP

should indeed compensate each other, i.e. should tend to cancel each other out. Conversely, we might

observe the opposite for an immune antiviral VIP under directional stability evolution, with the sum of

stability changes caused by each amino acid substitution being further from zero than expected by chance,

if the direction of selection was preferentially toward increasing, or toward decreasing stability.

This is straightforward to look at because we can compare the sum of stability changes associated with

each substitution in a VIP with the null expected distribution under neither stabilizing compensatory nor

directional selection. We get the null expected distribution by randomly shuffling estimates of protein

stability changes between genes included in the analysis (Methods), while also preserving the absolute

average stability change per substitution in each VIP with shuffled stability changes (Methods). Crucially,

the comparison with null expectations also provides a test of the quality of Thermonet ∆∆G predictions;

we do not expect any departure from random expectations if the predictions are too far from the actual

effects of the substitutions on protein stability.

The difficulty is then to identify immune antiviral, and non-immune proviral VIPs. To know which VIPs

fall into these two categories, we conducted an extensive manual curation of 4,477 virology articles on

VIPs, looking for the reported functional effects of VIPs on the replication cycle of a wide range of

viruses (Methods). Through this effort we were able to identify 772 immune antiviral VIPs and 1,434

non-immune proviral VIPs as of October 2022 (Table S1; Methods).

We must further consider a few important potential limitations. In the millions of years since divergence

with chimpanzees (a short amount of time for protein divergence), most VIPs with amino acid

substitutions have accumulated only one such substitution and are therefore not appropriate for testing

directional or compensatory evolution that imply multiple substitutions. Thus, we restrict this analysis to

67 immune antiviral VIPs and 43 non-immune proviral VIPs with two or more amino acid substitutions in

the human branch (Table S1). We further consider that it might take more than one additional substitution

to complete an episode of compensatory evolution after an epidemic, or more than two overall

substitutions to start seeing a clear unidirectional pattern of directional selection. Thus, in addition to the

test with VIPs with two or more nonsynonymous substitutions, we also further restrict our analysis to

VIPs with three or more substitutions, in particular with the expectation that the signatures of

compensatory evolution should be more visible in this subset of VIPs. We also restrict the test to VIPs

with a minimal number of increasingly large absolute stability changes. Indeed, VIPs with no pronounced
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stability change may be entirely intolerant to such changes, or may not require compensatory evolution at

all in the first place.

Using this specific, increasingly restrictive testing design, we first find that the 67 immune antiviral VIPs

with at least two substitutions (Table S1) have predominantly experienced directional stability evolution.

On average across these VIPs, the sum of stability changes is 1.17 fold further from zero than expected by

chance (stability shuffling test P=2.5*10-3; Methods). As predicted, this departure tends to become more

pronounced when focusing on immune antiviral VIPs with a larger number of increasing high stability

changes (Figure 5A,B). Individual antiviral VIPs with a strong signature of directional stability evolution

notably include the APOBEC3G antiviral factor, albeit with marginal statistical significance (Table S1;

sum of stability changes two times higher than expected, stability shuffling test P=0.07). Although

immune antiviral VIPs have an overall collective trend toward directional selection, we notice a few

notable exceptions. TRIM5 has a signature of compensatory, not directional stability evolution (Table S1).

The sum of the six stability changes in TRIM5 is 10.7 times closer to zero than expected by chance

(stability shuffling test P=0.049). Similarly, the prominent antiviral factor OAS1 has three stability

changes with a signature of compensatory evolution (sum 20.1 times closer to zero than expected by

chance, stability shuffling test P=0.028).

Figure 5. Directional evolution in immune antiviral VIPs.
The y-axis represents how many times further from zero the average of the per-VIP |sum| of stability
changes is compared to random expectations. Central curve: compared to average random expectations
over 1,000,000 random iterations (Methods). Lower curve: 95% confidence interval lower boundary.
Upper curve: 95% confidence interval upper boundary. The x-axis represents the |∆∆G| threshold to
restrict the shuffling test only to groups of immune antiviral VIPs each with (A) at least two substitutions
in total including at least one at or above the |∆∆G| threshold, or (B) at least two substitutions in total
including at least two at or above the |∆∆G| threshold.
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But compensatory stability evolution is most visible in non-immune proviral VIPs. For these VIPs we

observe an overall trend of the sum of stability changes being on average closer to zero than expected by

chance (Figure 6, y-axis). Overall, the sum is 1.2 times closer to zero than expected by chance in the 43

non-immune proviral VIPs with at least two nonsynonymous substitutions (stability shuffling test P=0.02;

Methods). This trend becomes much more pronounced when restricting the test to non-immune proviral

VIPs with three or more nonsynomymous substitutions, and when restricting the test to VIPs with an

increasing number of more pronounced stability changes (Figure 6A,B,C). For example, the sum of

stability changes is on average 2.5 times closer to zero than expected in the 16 non-immune proviral VIPs

with at least three nonsynonymous substitutions including two with |∆∆G|≥0.2 (Figure 6C and Table S1,

stability shuffling test P=1.6*10-5). This strong increase of the compensatory evolution signature

compared to when including any nonsynonymous substitutions makes sense, given that many

non-immune VIPs with weaker |∆∆G| substitutions likely do not need compensatory evolution in the first

place.

Figure 6. Compensatory evolution in non-immune proviral VIPs.
The y-axis represents how many times closer to zero the average of the per-VIP |sum| of stability changes
is compared to random expectations. Central curve: compared to average random expectations over
1,000,000 random iterations (Methods). Lower curve: 95% confidence interval lower boundary. Upper
curve: 95% confidence interval upper boundary. The x-axis represents the |∆∆G| threshold to restrict the
shuffling test only to groups of non-immune proviral VIPs each with (A) at least two substitutions in total
including at least one at or above the |∆∆G| threshold, or (B) at least three substitutions in total including
at least one at or above the |∆∆G| threshold, or (C) at least three substitutions in total including at least
two at or above the |∆∆G| threshold. The blue curves in (D) are the same as in (B). The red curves in (D)
represent how much closer the average of the per-VIP |sum| of stability changes is compared to random
expectations in VIPs with at least three substitutions in total, including at least one at or above the
destabilizing ∆∆G threshold on the x-axis. Note the very different ranges of the y-axis for A,B,C and D.
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Having clarified the possible impact of compensatory evolution in non-immune proviral VIPs, we further

test one last prediction. Because proviral VIPs benefit the viruses that subvert them, strongly destabilizing

substitutions that strongly decrease the abundance of non-immune proviral VIPs should be particularly

advantageous during viral epidemics, and may also require similarly strong compensatory evolution

afterwards. Thus, we expect that compensatory evolution should be particularly visible in non-immune

proviral VIPs with at least one strongly destabilizing substitution, compared to non-immune proviral VIPs

with at least one substitution affecting stability similarly but in either direction, stabilizing or

destabilizing. When we compare these two situations, we find a much stronger signal of compensatory

evolution in non-immune proviral VIPs specifically with at least one strongly destabilizing substitution

(Figure 6D). This signal increases when restricting the test to VIPs with at least one increasingly

destabilizing substitution (Figure 6D). This supports the predicted model where strongly destabilizing

substitutions made proviral VIPs less available to viruses during epidemics, followed by compensatory

evolution with stabilizing substitutions.

Together, these results highlight important differences in the stability evolution of two functional types of

VIPs. The predominant signature of directional selection in immune antiviral VIPs, and most importantly

the strong signature of compensatory evolution in non-immune proviral VIPs, cannot be expected if the

Thermonet predictions were not of good, sufficient quality. Indeed, it is difficult to see how the sum of

stability change predictions would be so much closer to zero than expected in non-immune proviral VIPs,

if those predictions were far from the actual, real effect of the corresponding amino acid changes on

protein stability. It would also be hard to explain how the compensatory evolution signature could be so

much stronger in non-immune proviral VIPs with strongly destabilizing substitutions. This further

provides strong support for the Thermonet ∆∆G predictions.

Discussion

Using Thermonet predictions of protein stability changes, we found that such changes were likely an

important mechanism of virus-driven host adaptation. Although the computational nature of these

predictions may raise doubt about their quality, it is important to reiterate that poor predictions not much

better than random would not have allowed us to observe a large adaptation difference between LSCs and

SSCs in VIPs, or the marked differences between immune antiviral and non-immune proviral VIPs

(directional vs. compensatory evolution). Specifically, our results with non-immune proviral VIPs

suggests an evolutionary model with positive selection during and after viral epidemics, with changes in

stability during epidemics that are later compensated back to pre-epidemic stability levels that are likely
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more optimal for native host functions. This evolutionary model however requires further investigation. In

particular, we do not have access to the chronological order of substitutions that would allow to further

test it.

Together with previous studies, our results further highlight a common theme of host adaptation through

changes in RNA and/or protein abundance of genes that interact functionally with pathogens. We

previously found that strong selection during an ancient coronavirus or related virus epidemic in East Asia

predominantly occurred at or in close linkage to eQTLs of coronavirus VIPs (Souilmi et al., 2021).

Similarly, Klunk et al. recently found that the most strongly selected variants during the Black Death are

associated with changes in the expression level of immune genes (Klunk et al., 2022). There is also

evidence that adaptive introgression in response to viruses, from Neanderthals to Eurasian modern human

ancestors, involved Neanderthal variants that affect gene expression (Enard and Petrov, 2018; Nedelec et

al., 2016; Quach et al., 2016).

Importantly however, our results do not exclude that mechanisms other than VIP stability changes also

have played an important role in virus-driven protein host adaptation. Adaptive evolution in viral

receptors might cut epidemics short by blocking viruses from infecting cells altogether. Similarly,

adaptation in prominent antiviral factors such as TRIM5 or APOBECs may have had an oversized impact

compared to VIPs not specialized in attacking viruses (Sawyer et al., 2004; Sawyer et al., 2005).

Quantifying the relative quantitative contributions of different mechanisms of host adaptation is however

complicated by the fact that the location of the vast majority of physical contact interfaces between

viruses and VIPs are currently unknown. Further understanding of virus-driven adaptation will likely

require a better knowledge of these interfaces. That said, we still do not expect that adaptation at contact

interfaces may be able to fully explain the abundant adaptation we observe for large stability changes, in a

scenario where these would only be a secondary bystander effect. Indeed, we found strong

stability-dependent adaptation in more buried parts of the structures of VIPs. This however does not

exclude the possibility of adaptive changes in binding between viruses and VIPs also due to allosteric,

distance effects of buried adaptive amino-acid substitutions, through conformational and/or structural

flexibility changes. It is also important to note that we only focused on parts of proteins that are

well-structured with high Alphafold 2 confidence scores (Methods). Intrinsically disordered protein

segments are known to result in poor structure confidence scores, and were thus completely excluded

from our analysis. Whether intrinsically disordered proteins or protein segments also participate

substantially to virus-driven adaptation remains an open question (Lou et al., 2016).
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Our results suggest that in the future, identifying the biological mechanisms involved in virus-driven

adaptation might enable more discriminant detection of ancient viral epidemics, where the involvement of

a specific virus in past epidemics may be recognized not only through an overall increase in adaptation in

its specific VIPs, but more specifically through an increase in adaptative evolution of specific mechanistic

attributes such as protein stability. In that respect, we find that RNA viruses clearly stand out during

human evolution compared to DNA viruses. Taken together, our results show that in addition to the

detailed functional study of specific gene candidates by evolutionary virologists, the study of quantitative

patterns of adaptive evolution in VIPs as a whole group can provide new insights on the functional

evolutionary changes that gave hosts a fighting chance against repeated viral epidemics.

Methods

Identifying human protein coding genes with orthologs across mammals

We previously found that viruses increase adaptation specifically in VIPs with orthologs across mammals

(Castellano, 2019). We therefore restrict all analyses to VIPs and non-VIPs with orthologs across

mammals. We use an updated list of Ensembl v99 human genes (Cunningham et al., 2019) with orthologs

found in at least 251 out of 261 mammalian genome assemblies. These 261 assemblies were extracted

from NCBI Genome (https://www.ncbi.nlm.nih.gov/genome/) and are the deposited assemblies that had a

N50 contig size of at least 30kb as of July 2021, in order to limit the number of truncated genes. Ensembl

human protein coding genes are selected as mammals-wide orthologs if they have best-reciprocal hits

using the largest number of identical nucleotide hits from Blat alignments (Kent, 2002), with at least 251

out of the 261 genome assemblies (to account for the fact that orthologs in some species may have not

been sequenced, and located in assembly gaps). This process finds 13,495 such human Ensembl v99

genes with orthologs across mammals (Table S1). The list of mammalian species and the corresponding

assembly versions are provided in Table S2.

Thermonet predictions with Alphafold structures

We use the Thermonet software to predict the ∆∆G caused by specific amino acid changes in VIPs and

non-VIPs. Thermonet uses a convolutional neural network to make ∆∆G predictions. Thermonet’s neural

network is trained using images of the biophysical properties of the close three-dimensional environment

of the amino-acid change location. The neural network was trained first on experimental datasets of ∆∆G

measurements. Because Thermonet uses the three-dimensional local environment, it requires a protein

structure as input. To run Thermonet we chose to use public Alphafold v2 structures (from
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https://alphafold.ebi.ac.uk/) rather than experimental structures because using only available human

experimental structures would have strongly limited the number of VIPs and the statistical power of the

analysis. Alphafold 2 however generates structures very close to the experimental ones when the latter are

available to use by Alphafold as input (Jumper et al., 2021). This means that for those proteins with

experimental structures, we expect very little difference when using the Alphafold structures. The

advantage of Alphafold is then also that it provides good quality predictions for a substantially larger

number of human proteins than are experimentally available (Jumper et al., 2021). This is because

Alphafold accurately predicts structures made of local folds that are well represented in its input database

(Jumper et al., 2021). Nevertheless, Alphafold still fails to properly predict a subset of proteins or parts of

proteins that then have a mixture of well and poorly predicted local structure regions. Note that this is

particularly true for proteins or parts of proteins that are intrinsically disordered and thus do not have one

single structure to predict in the first place.

Fortunately, Alphafold provides a site-by-site confidence score, noted pLDDT (Jumper et al., 2021). The

pLDDT score has been shown by comparison with experimental structures to strongly predict the

per-residue structure accuracy. The pLDDT score varies from zero to 100, with 100 indicating the most

accurate per-residue structural prediction possible. A pLDDT score above 70 is usually indicative of a

highly accurate structure prediction. For this reason, in our analysis we only use Thermonet ∆∆G

predictions at sites with a pLDDT equal to or greater than 70. We also only use Alphafold structures with

50% or more sites with pLDDT≥70. In total 76% of the VIPs and non-VIPs that we compare have such

high quality Alphafold 2 structures (same % for VIPs and non-VIPs), for a total of 2,909 and 5707

non-VIPs. In addition, to avoid any confounding effect of discrepancies between the accuracy of

Alphafold structures between VIPs and non-VIPs, we match VIPs with control non-VIPs with similar

average per-residue pLDDT and percentage of sites with pLDDT≥70 (see below, VIPs and control

non-VIPs with matching confounding factors).

Using the filters described above, we use 86,244 and 10,337 Thermonet ∆∆G predictions for coding

variants and substitutions, respectively. Figure 1 represents the distribution of the predicted ∆∆G for

variants (Figure 1A) and substitutions (Figure 1B). We run Thermonet using the amino acid change from

the ancestral to the derived amino-acid, from the ancestral to the fixed human amino acid for

substitutions, and from the ancestral to the derived allele for variants. Finally, it is also important to note

that Alphafold only provides publicly the structures of the canonical coding sequence of each protein

coding gene, but not for their other isoforms. Here we thus use only the corresponding Ensembl v100

canonical coding sequences with an Alphafold structure, which excludes variants and substitutions in

other isoforms that do not overlap with the canonical isoform.
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Variants and substitutions data for ABC-MK

We use ABC-MK as previously extensively described in (Uricchio et al., 2019), using the human coding

variants and substitutions dataset also described in the same publication. The main difference is that we

split nonsynonymous variants and substitutions into two groups, noted LSCs  and SSCs in the main text,

according to their predicted ∆∆G that we then run ABC-MK on separately. We separate the two groups

according to the variants absolute median of |∆∆G| (0.225) in the 2,909 VIPs included in the analysis. We

do this so that the groups have similar amounts of information, and thus the same variance of ABC-MK

estimates of the proportion of selected substitutions. This proportion is usually noted α, calculated as

α=1-(PN*DS)/(PS*DN), where PN and PS are the numbers of nonsynonymous and synonymous variants,

respectively, and DN and DS are the numbers of nonsynonymous and synonymous fixed substitutions,

respectively. The classic MK test simply uses this calculation of α. ABC-MK uses a more complex

approach by computing the α-curve, which is the curve of α measured specifically for bins of derived

allele frequencies, as for example in Figure 1C. This is required to account for segregating

non-synonymous deleterious variants among other things (Uricchio et al., 2019). ABC-MK uses

Approximate Bayesian Computation to match the observed α-curve with the best-fitting ones among

many analytically predicted α-curves. Each analytical α-curve is generated for millions of combinations

of varying distributions and amounts of deleterious, weakly advantageous, and strongly advantageous

mutations. The difference between weakly and strongly advantageous variants that is exploited by

ABC-MK is that weakly advantageous mutations do not go to fixation so fast that their contribution to

nonsynonymous polymorphism is negligeable as it is for strongly advantageous variants (Uricchio et al.,

2019). This affects the shape of the α-curve, especially at higher derived allele frequencies where weakly

advantageous variants tend to segregate before eventually reaching fixation (selective sweeps tend to have

a long pre-fixation phase after the faster exponential one). This translates into a downward trend of the

α-curve at higher frequencies that can be detected by ABC-MK. It is important to note that another

possible cause of a downward trend of the α-curve at higher frequencies is mispolarization, where low

frequency derived nonsynonymous alleles may be mistaken for high frequency derived ones. This can

happen when a nucleotide site experienced a substitution in the human branch, but subsequently

experienced a mutation back to the initial ancestral nucleotide. This new derived allele will then be

mistakenly annotated as the ancestral (Hernandez et al., 2007). Hernandez et al. have shown that in the

human genome this issue affects derived alleles with a frequency greater than 0.7. We therefore run

ABC-MK using nonsynonymous and synonymous variants with a derived allele frequency less than 0.7.

It is also important to mention that ABC-MK uses the shape of the α-curve at low derived allele

frequencies to estimate the distribution of deleterious fitness effects (Urrichio et al.). An important last
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detail about how we run ABC-MK is that because as described above, we only use amino acids with a

pLDDT score at or above 70, we only use the synonymous variants and substitutions in the corresponding

codons. We use the same set of synonymous variants and substitutions as a neutral reference when we run

ABC-MK either with LSCs or SSCs, since focusing on smaller subsets of nonsynonymous changes

(either LSCs or SSCs) is readily accounted for by the PN over DN ratio in the equation

α=1-(PN*DS)/(DN*PS). ABC-MK is available at https://github.com/jmurga/MKtest.jl.

Controlling for confounding factors when matching VIPs and non-VIPs

To highlight evolutionary patterns of adaptation that are specific to VIPs, we compare them with sets of

control non-VIPs that have been matched with VIPs so that the former have the same average values of

confounding factors as the latter. Here confounding factors are factors other than physical interaction with

viruses that in principle might affect adaptation, and thus explain differences between VIPs and non-VIPs

instead of physical interactions with viruses. We know for example that VIPs tend to be much more

highly expressed at the mRNA level than non-VIPs. Higher expression might hypothetically be associated

with increased adaptation, and thus explain the increased adaptation in VIPs rather than interactions with

viruses. We match control non-VIPs with VIPs using a bootstrap procedure that was already extensively

previously described (Di et al., 2021; Enard and Petrov, 2020). In total we match 17 potential

confounding factors between VIPs and control non-VIPs:

-Ensembl canonical coding sequence length, since they correspond to the isoform used by Alphafold.

- the average GC content for each coding sequence.

- the average GC1 content at the first codon nucleotide position for each coding sequence.

- the average GC2 content at the second codon nucleotide position for each coding sequence.

- the average GC3 content at the third codon nucleotide position for each coding sequence. GC1, GC2,

and GC3 control for possible differences in GC content between nonsynonymous and synonymous sites

that might distort the α-curve.

- average GTEx v8 (Consortium, 2020) TPM (Transcripts Per Million) mRNA expression across 53

tissues (in log base 2).
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- average GTEx v8 TPM mRNA expression in lymphocytes (in log base 2).

- average GTEx v8 TPM mRNA expression in testis (in log base 2).

- the number of protein-protein interactions (in log base 2) in the human protein interaction network

(Luisi et al., 2015).

- the proportion of immune genes as annotated with the Gene Ontology terms GO:0002376 (immune

system process), GO:0006952 (defense response) and/or GO:0006955 (immune response) as of May 2020

(Gene Ontology, 2015).

- the recombination rate (Halldorsson et al., 2019) in 500kb windows centered on genes, to account for

potential mutational biases related to recombination such as biased gene conversion that could

differentially affect synonymous and nonsynonymous sites with different GC content. We use large 500kb

windows because they better represent the long-term recombination rate in a given genomic window

compared to smaller windows.

- McVicker’s B value (McVicker et al., 2009), a measure of background selection that we used to account

for the recent prevalence of segregating deleterious variants in the genomic environment surrounding a

coding sequence and that could affect adaptation (Di et al., 2021).

- the density of GERP conserved elements (Davydov et al., 2010) in 50 kb and 500 kb windows centered

on genes, to further account for the possible prevalence of segregating deleterious variants in the genomic

environment surrounding a coding sequence.

- the proportion of amino acids in the Alphafold v2 structure with a pLDDT score of 50 or above.

- the proportion of amino acids in the Alphafold v2 structure with a pLDDT score of 70 or above.

- the average pLDDT score in the entire Alphafold structure.

Estimation of Relative Solvent Accessibilty
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Relative Solvent Accessibility (RSA) provides a measure of how exposed at the surface or buried close to

the protein core specific amino acids are in the Alphafold structures. We measure RSA using DSSP

(Kabsch and Sander, 1983).

Functional annotation of VIPs

As part of an ongoing effort to annotate the functional impacts of VIPs on viruses, we have to date

manually curated 4,477 virology articles from Pubmed to collect their proviral and/or antiviral effects

(Table S1), as reported by the virology experiments described in those virology articles. We also

annotated if the proviral and antiviral effects occurred through an immune function of the VIPs, either

directly reported by the virology articles or because of the fact that the corresponding VIPs are annotated

with the Gene Ontology terms GO:0002376 (immune system process), GO:0006952 (defense response)

and/or GO:0006955 (immune response) as of May 2020. Through this annotation we identified 772 VIPs

with an immune antiviral impact, and 1,434 VIPs with a non-immune, proviral impact (Table S1).

Interestingly, we also found that 321 of the 772 antiviral immune VIPs for at least one virus, also have

proviral effects for the same or different viruses. A detailed inspection of such cases shows that it happens

for example when an expressed antiviral immune VIP has a molecular activity involved in the immune

response that is subverted by viruses. For example, the antiviral VIP CREBBP is an important

transcription activator involved in interferon beta production (Qu et al., 2021), that is exploited by the

Human T-cell Leukemia virus to activate the transcription of its own viral genes (Scoggin et al., 2001).

Antiviral immune VIPs expressed during infection are likely good targets for proviral repurposing by

viruses, due to their broad availability at the precise time of need of their molecular activities by viruses.

Directional and compensatory evolution of VIP stability

To detect directional or compensatory evolution of stability in VIPs, we design a random shuffling test

based on the sum of stability changes in individual VIPs, then averaged over VIPs with multiple amino

acid changes tested together. For example, in non-immune proviral VIPs we expect each individual VIP

with multiple amino acid changes to have stability changes that tend to cancel out each other, thus

resulting in a sum of stability changes closer to zero than expected by chance. As a statistic we use the

average across VIPs of the absolute value of the sum of stability changes in each VIP. We then compare

this average with its random expectation. This random expectation is generated as follows: for each VIP

with a number x of stability changes, we randomly sample x stability changes from the entire pool of all

predicted stability changes. We iterate this random sampling for each given VIP, until the randomly

sampled stability changes have an average |∆∆G| that matches the observed average |∆∆G| for this VIP

(plus or minus 2%). We do this to account for the fact that different VIPs may have different spreads of
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their distribution of possible stability changes, which could affect the null random expected sum of

stability changes for each VIP. For the whole set of tested VIPs, we iterate this process 1,000,000 times to

determine the average random expectation and the statistical significance of any observed departure of the

real average sum of stability changes from this expectation. The sets of VIPs tested together must fulfill a

number of pre-requisites, such as a minimal total number of stability changes, and a minimum number of

those stability changes having their individual |∆∆G| above a fixed threshold. For example, for

non-immune proviral VIPs, we use these pre-requisites with increasingly stringent thresholds supposed to

restrict the test to a number of VIPs where signatures of compensatory evolution are expected to be more

visible. Indeed, compensatory evolution is more likely to have occurred in VIPs with a larger number of

stability changes (compensatory changes had the chance to occur in the first place), and with a minimum

number of large |∆∆G| changes (compensatory evolution is likely required only when large |∆∆G| changes

occurred in the first place). We represent in Figure 5 the ratio of the observed average absolute value of

the sum of stability changes, divided by the average random expectation (and the inverse for Figure 6)

and its 95% confidence intervals upper and lower values generated by the 1,000,000 random samplings.
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Supplements

Figure S1. Distributions of ancestral RSA of LSC and SSC and correlation between stability

changes and RSA.

Distributions of ancestral RSA of A) LSC and B) SSC variants. The dashed line is the median, the median

RSA in LSC is 0.23 smaller than the median RSA in SSC (0.4). C) The correlation between the absolute

value of stability changes and ancestral RSA.
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Figure S2. More adaptation in LSC in less exposed sites
Legend same as Figure 2. Instead of splitting mutations by the median RSA in LSC (RSA=0.23), here, we
use the median of SSC (RSA=0.4) to split mutations into more exposed and less exposed parts. A)
adaptation in LSC in more exposed parts of VIPs and control non-VIPs with RSA≥0.4, the median for
SSC B) same as A) but for more buried parts with RSA<0.4.
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Figure S3. Adaptation in LSC and SSC for VIPs interacting with different viruses

Legend same as Figure 2. Adaptation in LSC and SSC for VIPs interacting with different viruses from
A-O are DENV, HIV, IAV, WNV, EBOV, HCV, ZIKV, EBV, HBV, HPV, HSV, KSHV, VACV, RNAonly,
DNAonly. The ranges of P-values are: <=0.05 (*), <=0.01 (**), <=0.001 (***), <=0.0001 (****).
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